Answer on Question \#52217-Physics-Optics

Object O 1 is 15.0 cm to the left of a converging lens with a 10.0 cm focal length. A second lens is positioned 10.0 cm to the right of the first lens and is observed to form a virtual image at the position of the original object O . What is the focal length of the second lens? What is the overall magnification of this system? What is the nature of the final image?

Solution

$$
\frac{1}{d_{i}}+\frac{1}{d_{o}}=\frac{1}{f} \rightarrow \frac{1}{d_{i}}=\frac{1}{15 \mathrm{~cm}}+\frac{1}{10 \mathrm{~cm}} \rightarrow d_{i}=30 \mathrm{~cm} .
$$

$$
\frac{1}{d_{i 2}}+\frac{1}{d_{o 2}}=\frac{1}{f_{2}} \rightarrow \frac{1}{-20 c m}+\frac{1}{-25 c m}=\frac{1}{f_{2}}
$$

The focal length of the second lens is

$$
f_{2}=-11.1 \mathrm{~cm}
$$

The overall magnification of this system is

$$
M_{t o t}=m_{1} m_{2}=\left(-\frac{d_{i}}{d_{0}}\right)\left(-\frac{d_{i 2}}{d_{02}}\right)=\left(-\frac{30}{15}\right)\left(-\frac{-25}{-20}\right)=2.5
$$

The final image is upright since $M_{t o t}$ is positive and virtual $d_{i 2}$ is negative and final image is made by a diverging lens.

