

Answer on Question #52216-Physics-Optics

An object is placed 50.0cm from a screen. Where a converging lens of focal length 10.0cm should be placed to form an image on the screen? Find the magnification of the lens.

Solution

From the thin lens equation, $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$, and $p + q = 50.0\text{cm}$ the image distance is found to be

$$\frac{1}{50-q} + \frac{1}{q} = \frac{1}{f} \rightarrow \frac{50}{q(50-q)} = \frac{1}{f} \rightarrow 50f = -q^2 + 50q.$$

$$q^2 - 50q + 500 = 0.$$

$$D = (-50)^2 - 4 \cdot 500 = 500.$$

$$q = \frac{50 \pm \sqrt{500}}{2} = 25 \pm 5\sqrt{5}.$$

Thus a converging lens should be placed at $q_1 = 36.2\text{cm}$ or $q_2 = 13.8\text{cm}$.

The magnification of the lens is

$$m_1 = -\frac{q_1}{p_1} = -\frac{36.2}{50 - 36.2} = -2.62 \text{ or}$$

$$m_2 = -\frac{q_2}{p_2} = -\frac{13.8}{50 - 13.8} = -0.38.$$