Answer on Question 52206, Physics, Molecular Physics | Thermodynamics

Question:

A certain mass of a gas at 273 K temperature and one atmospheric pressure is expanded to 3 times its original volume under adiabatic conditions. Calculate the resulting temperature and pressure. (Take the value of $\gamma=1.4$)

Solution:

a) Let's write the mathematical equation for an ideal gas undergoing a reversible adiabatic process:

$$
P V^{\gamma}=\text { const, (1) }
$$

where, P is the pressure, V is the volume and $\gamma=1.4$ is the adiabatic index.
Then we can write:

$$
\begin{gathered}
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \\
P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=1 \mathrm{~atm} \cdot\left(\frac{1}{3}\right)^{1.4}=0.215 \mathrm{~atm} .
\end{gathered}
$$

b) Since $P=n \frac{R T}{V}$, the above formula (1) implies that:

$$
T V^{\gamma-1}=\text { const. }
$$

Then we can write:

$$
\begin{gathered}
T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} \\
T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=273 \mathrm{~K} \cdot\left(\frac{1}{3}\right)^{0.4}=176 \mathrm{~K} .
\end{gathered}
$$

Answer:

The resulting temperature and pressure would be:
a) $P_{2}=0.215 \mathrm{~atm}$.
b) $T_{2}=176 \mathrm{~K}$.
http://www.AssignmentExpert.com/

