Answer on Question \#52205-Physics-Molecular Physics-Thermodynamics

a) Derive an equation of state $p V_{\gamma}=$ constant for an adiabatic process and show that an adiabat is steeper than an isotherm.
b) A block of copper whose expansivity, β, is $48.0 \cdot 10^{-6} k^{-1}$ and isothermal elasticity, E_{T} is $1.30 \cdot$ $10^{11} \mathrm{Nm}^{-2}$ is at atmospheric pressure and a temperature of $0^{\circ} \mathrm{C}$. Its temperature is raised to $10^{\circ} \mathrm{C}$. Calculate the final pressure when volume is kept constant. Express your answer in units of atmospheric pressure (atm).
c) Explain the working of a constant volume gas thermometer with the help of a neat and labeled diagram.

Solution

a) Let us use the first law of thermodynamics $\delta Q=C_{V} d T+P d V$ in order to derive an equation of state for adiabatic process. For an adiabatic process $Q=0$, thus $C_{V} d T=-P d V$. Substituting the equation of ideal gas for one mole $P=\frac{R T}{V}$ into the right side of the previous equation, obtain $C_{V} d T=\frac{-R T}{V} d V$, or $\frac{d T}{T}=\frac{-R}{C_{V}} \frac{d V}{V}$. Integrating from both sides, obtain $\frac{T_{2}}{T_{1}}=\frac{-R}{C_{V}} \ln \frac{V_{2}}{V_{1}} \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\frac{R}{C_{V}}}$ using the properties of logarithm. The last equation might be rewritten as $T V^{\frac{R}{C_{V}}}=$ const or $T V^{\gamma-1}=$ const, where $\gamma=\frac{C_{P}}{C_{V}}$ (Here we also used $C_{P}=$ $\left.C_{V}+R\right)$.

Using $T=\frac{P V}{R}$ and last equation, obtain $P V^{\gamma-1+1}=P V^{\gamma}=$ const.
The equation of isotherm is $P_{V}=$ const, thus if $\gamma=\frac{C_{P}}{C_{V}}>1$, the adiabat $P_{V}^{\gamma}=$ const is obviously.
b) For an isochoric process, we have

$$
p_{2}-p_{1}=\beta E_{T}\left(T_{2}-T_{1}\right)
$$

On substituting the values of $\beta E_{T}\left(T_{2}-T_{1}\right)$, we get

$$
p_{2}-p_{1}=48.0 \cdot 10^{-6} k^{-1} \cdot 1.30 \cdot 10^{11} \mathrm{Nm}^{-2}(10 \mathrm{~K})=624 \cdot 10^{5} \mathrm{Nm}^{-2}=624 \mathrm{~atm}
$$

so that final pressure p_{2} is

$$
p_{2}=(624+1) \mathrm{atm}=625 \mathrm{~atm}
$$

That is, to keep the volume of the copper block constant when its temperature is raised from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$, one must increase the pressure to 625 atm .
c) The schematic diagram of a constant-volume gas thermometer is shown in Fig.1. The volume of an ideal gas in the sensing bulb D is kept constant by adjusting the level of mercury in the arm B of the manometer. The arm B and the arm A are connected by a flexible tube to form a U-tube manometer. The arm B is also connected to the gas bulb D via a capillary tube C, while the other arm A of the manometers is open to atmosphere and can be moved vertically to adjust the mercury level, so the mercury just touches the mark L of the capillary. The pressure in the bulb b is used as a thermometric property and can be given by

$$
\mathrm{p}=\mathrm{p}_{\mathrm{atm}}+\rho \mathrm{gh}(1)
$$

where $p_{\text {atm }}$ is atmospheric pressure; ρ is the density of the mercury; h is the mercury column in manometer.

The gas bulb D is first placed in constant-temperature bath at the triple point temperature $T_{t p}$ of water and the level of mercury is adjusted to touch the mark L by moving the manometer arm A up and down.

Fig. 1.
As the volume of the bulb becomes constant and the height difference of the mercury in the two arms is recorded as $h_{t p}$ the pressure, $p_{t p}$ corresponding to the mercury column at the triple point is calculated by Eq. (1)

Now the bulb is brought in contact with a system whose temperature T, is to be measured. Again, in a similar manner, by keeping the volume of gas in the bulb constant, the height difference of the mercury in the two arms is recorded and the corresponding new pressure p is calculated by Eq. (2).

From the ideal gas equation, the new temperature is given by

$$
\mathrm{T}=273.15 \mathrm{~K} \frac{p}{p_{t p}}
$$

where 273.15 K is the triple point temperature of water.

