
 

 

Answer on Question #52204-Physics-Molecular Physics-Thermodynamics 

a) What do you understand by mean free path of gas molecules? Derive an expression for the law of 

distribution of free paths. 

b) What is Brownian motion? Give three examples of such a motion. Using Einstein’s theory, obtain an 

expression for Einstein’s formula for mean square displacement of a Brownian particle. 

c) What is the transport phenomenon in gases? Obtain an expression for coefficient of viscosity of a gas if 

the average number of molecules crossing an area is given by 𝛥𝑛 =
1

4
𝑛𝑣 and molecules make their last 

collision before crossing an imaginary surface at a distance of 
2

3
𝜆 above or below it. 

Solution 

a) The mean free path is the average distance traveled by a moving molecule between successive collisions, 

which modify its direction or energy or other particle properties. 

Consider a large number of molecules at a certain instant. As they travel they will collide among themselves 

and with other molecules. We wish to estimate the number that has not made a collision at some later 

time. Let the number of molecules surviving a collision in travelling distance 𝑟 be 𝑁. If each molecule is 

allowed to travel a further distance 𝑑𝑥, more collisions will occur. We assume that the number of collisions 

is proportional to the number of molecules 𝑁, and the distance 𝑑𝑥. That is, the number of molecules 

removed by these collisions will be proportional to 𝑁𝑑𝑥. Since the number of molecules decreases with 

increasing distance, we can write 

𝑑𝑁 = −𝑃𝑐𝑁𝑑𝑥 

where 𝑃𝑐 is a constant of proportionality and is called the Collision probability. One can rewrite the above 

equation as 

𝑑𝑁

𝑁
= −𝑃𝑐𝑑𝑥 

This can be integrated to 

𝑁 = 𝑁0𝑒
−𝑃𝑐𝑥 

where 𝑁0 is the number of molecules at 𝑥 = 0. 

From this equation we find that number of molecules surviving a collision decreases exponentially. Further, 

the probability that a gas molecule will cover a distance x without making any collision is 

𝑁

𝑁0
= 𝑓(𝑥) = 𝑒−𝑃𝑐𝑥. 

This is the law of distribution of free paths. 

𝑃𝑐 =
1

𝑙
, where 𝑙 is mean free path. 

Thus 

𝑁

𝑁0
= 𝑒−

𝑥
𝑙 . 



 

 

b) Brownian motion is the random movement of microscopic particles suspended in a liquid or gas caused 

by their collision with the quick atoms or molecules in the surrounding medium. Three examples of such a 

motion: motion of pollen grains in water, diffusion of “holes” through a semiconductor, motion of smoke in 

a glass box. 

Let us obtain an expression for Einstein’s formula for mean square displacement of a Brownian particle. 

When Brownian particle is move the net force 𝐹 acts on it. Also on particle acts the friction force 𝑓 caused 

by the medium viscosity and directed opposite to the force 𝐹. 

Let us suppose that the particle has a spherical shape of radius 𝑎. Then the friction force 𝑓 can be expressed 

by the Stokes’ law: 

𝑓 =  6𝜋𝜂𝑎𝑣, 

where, 𝜂 is the dynamic viscosity, 𝑣 is the velocity of the particle. 

So, we can write the equation of motion of the particle: 

𝑚𝑟 =  𝐹 −  6𝜋𝜂𝑎𝑟 , (1) 

where, 𝑚 is a mass of the particle, 𝑟 is the radius-vector of the particle relative to an arbitrary coordinate 

system, 𝑟̇ = 𝑣 is the velocity of the particle. 

Let us consider the projection of the radius-vector on the axis 𝑋. Then the equation (1) looks like: 

𝑚𝑥 =  𝐹𝑥  −  6𝜋𝜂𝑎𝑥 , (2) 

where, 𝐹𝑥 is the projection of the net force 𝐹 on the axis 𝑋. 

We need to obtain the displacement of the Brownian particle 𝑥, which caused by the collisions with the 

molecules. Mean displacement of the particle 𝑥̅ would be equal to zero, because the displacements of the 

particle with equal probability can have both positive and negative values. But the mean square 

displacement 𝑥2̅̅ ̅ is not equal to zero, and we can rewrite the equation (2) so that it includes the value of 𝑥2 

(we multiply both sides of the equation on 𝑥): 

𝑚𝑥𝑥 =  𝐹𝑥  −  6𝜋𝜂𝑎𝑥𝑥 . (3) 

Let us use the next identities: 

𝑥𝑥 =
1

2

𝑑2(𝑥2)

𝑑𝑡2
− (

𝑑𝑥

𝑑𝑡
)
2

, 𝑥𝑥 =
1

2

𝑑(𝑥2)

𝑑𝑡
. 

Substituting these identities into the equation (3) we obtain: 

𝑚

2

𝑑2(𝑥2)

𝑑𝑡2
−𝑚(

𝑑𝑥

𝑑𝑡
)
2

= −3𝜋𝜂𝑎
𝑑(𝑥2)

𝑑𝑡
+ 𝑥𝐹𝑥 . 

This equality is valid for any particle and because of that it is also valid for mean values that includes in it, so 

we can write: 

𝑚

2

𝑑2(𝑥2̅̅ ̅)

𝑑𝑡2
−𝑚(

𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
= −3𝜋𝜂𝑎

𝑑(𝑥2̅̅ ̅)

𝑑𝑡
+ 𝑥𝐹𝑥̅̅ ̅̅̅. 

where 𝑥2̅̅ ̅ is the mean square displacement of the particle, (
𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅
 is the mean square velocity of the particle, 

the mean value of 𝑥𝐹𝑥̅̅ ̅̅̅ is equal to zero because for a large number of particles 𝑥 and 𝐹𝑥 equally takes both 

positive and negative values. Therefore, the equation (2) takes the next form: 



 

 

𝑚

2

𝑑2(𝑥2̅̅ ̅)

𝑑𝑡2
−𝑚(

𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
= −3𝜋𝜂𝑎

𝑑(𝑥2̅̅ ̅)

𝑑𝑡
(4) 

Because the motion of the particles is quite chaotic, then the mean squares velocity projections on all three 

coordinate axes must be equal to each other: 

(
𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
= (

𝑑𝑦

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
= (

𝑑𝑧

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
. 

Also obvious, that the sum of this values must be equal to the mean square velocity of the particles 𝑣2̅̅ ̅: 

(
𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
+ (

𝑑𝑦

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
+ (

𝑑𝑧

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
= 𝑣2̅̅ ̅. 

Therefore, we obtain: 

(
𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
=
1

3
𝑣2̅̅ ̅ 

𝑚(
𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
=
1

3
𝑚𝑣2̅̅ ̅ =

2

3

𝑚𝑣2̅̅ ̅

2
. 

Because the average kinetic energy of the Brownian particle must be equal to the average kinetic energy of 

the molecules of liquid (or gas), we can write: 

𝑚𝑣2̅̅ ̅

2
=
3

2
𝑘𝑇 

𝑚(
𝑑𝑥

𝑑𝑡
)
2̅̅ ̅̅ ̅̅ ̅̅
=
2

3

𝑚𝑣2̅̅ ̅

2
= 𝑘𝑇 (5). 

Substituting the equation (5) into the equation (4) we obtain: 

𝑚

2

𝑑2(𝑥2̅̅ ̅)

𝑑𝑡2
− 𝑘𝑇 = −3𝜋𝜂𝑎

𝑑(𝑥2̅̅ ̅)

𝑑𝑡
. 

This equation can be easily integrated. Let us denote 𝑍 =
𝑑(𝑥2̅̅̅̅ )

𝑑𝑡
 and rewrite the equation: 

𝑚

2

𝑑𝑍

𝑑𝑡
−  𝑘𝑇 =  −3𝜋𝜂𝑎𝑍. 

After separation of variables we obtain: 

𝑑𝑍

𝑍 −
𝑘𝑇
3𝜋𝜂𝑎

= −
6𝜋𝜂𝑎

𝑚
𝑑𝑡. 

Integrating the left-side of the equation within the limits from 0 to 𝑍 and the right side of the equation 

within the limits from 0 to 𝑡 we get: 

∫
𝑑𝑍

𝑍 −
𝑘𝑇
3𝜋𝜂𝑎

𝑍

0

= −∫
6𝜋𝜂𝑎

𝑚
𝑑𝑡

𝑡

0

 



 

 

ln (𝑍 −
𝑘𝑇

3𝜋𝜂𝑎
) − ln (−

𝑘𝑇

3𝜋𝜂𝑎
) = −

6𝜋𝜂𝑎

𝑚
𝑡. 

From this equation we can find 𝑍: 

𝑍 =
𝑘𝑇

3𝜋𝜂𝑎
(1 − 𝑒−

6𝜋𝜂𝑎
𝑚

𝑡) =
𝑑(𝑥2̅̅ ̅)

𝑑𝑡
. 

The value of 𝑒−
6𝜋𝜂𝑎

𝑚
𝑡 is negligible, so we can write: 

𝑑(𝑥2̅̅ ̅)

𝑑𝑡
=

𝑘𝑇

3𝜋𝜂𝑎
 (6). 

For the finite time intervals ∆𝑡 and appropriate displacements ∆𝑥2̅̅ ̅ the equation (6) takes form: 

∆𝑥2̅̅ ̅

∆𝑡
=

𝑘𝑇

3𝜋𝜂𝑎
. 

Finally, we obtain an expression for Einstein’s formula for mean square displacement of a Brownian 

particle: 

∆𝑥2̅̅ ̅ =
𝑘𝑇

3𝜋𝜂𝑎
∆𝑡. 

c) We have been able to relate quite a few macroscopic properties of gasses such as 𝑃, 𝑉, 𝑇 to molecular 

behavior on microscale. We saw how macroscopic pressure is related to the molecular motion in case of 

perfect gasses. Is there anything else interesting one can learn from the kinetic theory of perfect gasses? 

Indeed there is. 

So far we only considered macroscopic properties that can be termed as static. We shell now look at some 

properties that are not. Collectively they are termed transport phenomena and can be further subdivided 

in: 

•Diffusion – molecular transport due to concentration gradients 

•Thermal conduction – transport of energy 

•Viscosity – transport of momentum 

These are described by their corresponding coefficients: 𝐷 for diffusion, 𝐾 for thermal conduction and 𝜂 for 

viscosity. 

 

At a height 
2

3
𝜆 above the surface, the flow velocity of the gas molecules will be 𝑢 +

2

3
𝜆
𝑑𝑢

𝑑𝑦
 , where 𝑢 is flow 

velocity at the surface. The momentum transported by a molecule moving with this velocity will be 

𝑚(𝑢 +
2

3
𝜆
𝑑𝑢

𝑑𝑦
). So, the total momentum in direction of the flow carried across the surface per unit area per 

unit time by all the molecules crossing the surface from above will be 

𝐺+ =
1

4
𝑛𝑣𝑚(𝑢 +

2

3
𝜆
𝑑𝑢

𝑑𝑦
). 



 

 

Similarly, the total momentum flow carried across the surface per unit area per unit time by the molecules 

crossing it in upward direction from below will be 

𝐺− =
1

4
𝑛𝑣𝑚(𝑢 −

2

3
𝜆
𝑑𝑢

𝑑𝑦
). 

Hence, the net transport of momentum across the surface from below in the direction of mass motion per 

unit area per unit time, which is equal to the viscous force per unit area, is given by 

𝐺 = 𝐺− − 𝐺+ = −
1

3
𝑚𝑛𝑣𝜆

𝑑𝑢

𝑑𝑦
. 

The coefficient of viscosity of a gas is given by 

𝜂 =
1

3
𝑚𝑛𝑣𝜆 =

1

3
𝜌𝑣𝜆. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.AssignmentExpert.com 

https://www.assignmentexpert.com/

