Question

A cricket ball of mass 150 g is moving with velocity $12 \mathrm{~m} / \mathrm{s}$ and is hit by a bat so that ball is turned back with $20 \mathrm{~m} / \mathrm{s}$. The force acts for 0.01 s . The average force exerted by the bat on the ball is
a) 400 N
b) 450 N
c) 485 N
d) 480 N

Solution

$\mathrm{m}=150 \mathrm{~g}=0.15 \mathrm{~kg} ; \quad\left|\mathrm{v}_{\mathrm{i}}\right|=12 \mathrm{~m} / \mathrm{s} ; \quad\left|\mathrm{v}_{\mathrm{f}}\right|=20 \mathrm{~m} / \mathrm{s} ; \quad \Delta \mathrm{t}=0.01 \mathrm{~s}$.
The second Newton's Law:

$$
\begin{gathered}
\vec{F}=m \vec{a} ; \\
\vec{F}=m \frac{\overrightarrow{\Delta v}}{\Delta t}=m \frac{\overrightarrow{v_{f}}-\overrightarrow{v_{v}}}{\Delta t} ; F=m \frac{\left|v_{f}\right|-\left(-\left|v_{i}\right|\right)}{\Delta t}=m \frac{\left|v_{f}\right|+\left|v_{i}\right|}{\Delta t}=\mathbf{4 8 0} \mathbf{N}
\end{gathered}
$$

Answer: d) $\mathrm{F}=\mathbf{4 8 0} \mathrm{N}$.

