Answer on Question \#52073, Physics, Mechanics | Kinematics | Dynamics

A particle of mass m is moving in a circular path of constant radius r such that radial acceleration $a=k^{\wedge} 2+r^{\wedge} 2$. Find the power delivered to the particle by the forces acting on it.

Solution:

The radial acceleration is

$$
a_{r}=\frac{v^{2}}{r}
$$

From given

$$
a_{r}=k^{2}+r^{2}
$$

Thus,

$$
\begin{aligned}
& \frac{v^{2}}{r}=k^{2}+r^{2} \\
& v=\sqrt{k^{2} r+r^{3}}
\end{aligned}
$$

The force is

$$
F=m a=m\left(k^{2}+r^{2}\right)
$$

Power

$$
P=F v=m\left(k^{2}+r^{2}\right) \sqrt{k^{2} r+r^{3}}
$$

Answer: $m\left(k^{2}+r^{2}\right) \sqrt{k^{2} r+r^{3}}$

