Question

The distance to Polaris, the North star, is approximately $6.44 * 10^{18} \mathrm{~m}$. a. If Polaris were to burn out today, how many years does it take to see it disappear? b. How long does it take sunlight to reach Earth? c. How long does it take a microwave signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is $3.84 * 10^{5} \mathrm{~km}$.)

Solution

a. Velocity of light is $\mathrm{c}=3^{*} 10^{8} \mathrm{~m} / \mathrm{s} . \mathrm{I}=6.44^{*} 10^{18} \mathrm{~m}$. So we obtain:

$$
t=\frac{l}{c}=\frac{6.44 * 10^{18}}{3 * 10^{8}} s \approx 2.15 * 10^{10} s \approx 5.972 * 10^{6} \text { hours }=248840 \text { days } \approx 682 \text { years }
$$

Answer: t ≈ 682 years.

b. Distance from Sun to Earth $\mathrm{I}=150 * 10^{9} \mathrm{~m}$.

$$
t=\frac{l}{c}=\frac{150 * 10^{9}}{3 * 10^{8}} s=500 s=8 \text { minutes and } 20 \text { second }
$$

Answer: $\mathrm{t}=500 \mathrm{~s}=8$ minutes and 20 second.
c. $I=3.84 * 10^{8} \mathrm{~m}$.

$$
t=\frac{2 * l}{c}=\frac{2 * 3.84 * 10^{8}}{3 * 10^{8}} s=\mathbf{2 . 5 6 s}
$$

Answer: $\mathrm{t}=\mathbf{2 . 5 6 \mathrm { s }}$

