Answer on Question\#52005 - Physics - Optics

A particle ' P ' moves with velocity $10 \mathrm{~m} / \mathrm{sec}$ towards the intersection point ' O ' of the 2 plane mirror kept at right angle to each other. I1\&I2; are the images formed due to direct reflection from mirror M1 and mirror M2 respectively. Then the relative speed of I 1 with respect to I 2 will be
(1) $20 \mathrm{~m} / \mathrm{sec}$
(2) $12 \mathrm{~m} / \mathrm{sec}$
(3) $10 \mathrm{~V} 2 \mathrm{~m} / \mathrm{sec}$
(4) $16 \mathrm{~m} / \mathrm{sec}$

Solution:

If the velocity of particle P is

$$
\boldsymbol{v}=\left(-v_{x},-v_{y}\right),
$$

then velocities of images l_{1} and l_{2} are

$$
v^{l_{1}}=\left(-v_{x}, v_{y}\right)
$$

$$
\boldsymbol{v}^{\boldsymbol{l}_{2}}=\left(v_{x},-v_{y}\right)
$$

The relative velocity of $I 1$ with respect to $I 2$ is

$$
\boldsymbol{v}^{\boldsymbol{l}_{1} l_{2}}=\boldsymbol{v}^{1}-\boldsymbol{v}^{l_{2}}=\left(-v_{x}, v_{y}\right)-\left(v_{x},-v_{y}\right)=\left(-2 v_{x}, 2 v_{y}\right)
$$

Then the relative speed of $I 1$ with respect to $I 2$ is

$$
\left|\boldsymbol{v}^{l_{1} l_{2}}\right|=\sqrt{\left(-2 v_{x}\right)^{2}+\left(2 v_{y}\right)^{2}}=2 \sqrt{v_{x}^{2}+v_{y}^{2}}=2|\boldsymbol{v}|
$$

Since $|\boldsymbol{v}|=10 \frac{\mathrm{~m}}{\mathrm{~s}}$, we obtain

$$
\left|v^{l_{1} l_{2}}\right|=2|v|=2 \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}}=20 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

So the correct answer is (1).
Answer: (1).

