Answer on Question \#51990 - Physics - Other

Question.

A bullet is straight upward with a velocity of $100 \mathrm{~m} / \mathrm{s}$ from the top of a building 100 m high. Find its maximum height above the ground.
Given:
$v_{0}=100 \frac{\mathrm{~m}}{\mathrm{~s}}$
$h_{0}=100 \mathrm{~m}$
Find:
$h_{\text {max }}=$?

Solution.

From the energy conservation

$$
\frac{m v_{0}^{2}}{2}=m g h_{\max }
$$

it is known that maximum height can be defined as:

$$
h_{\max }=\frac{v_{0}^{2}}{2 g}
$$

But in our case maximum height above the ground is the sum of height of a building and maximum height above the top of building. So,

$$
h_{\max }=h_{0}+\frac{v_{0}^{2}}{2 g}
$$

Calculate:

$$
h_{\max }=h_{0}+\frac{v_{0}^{2}}{2 g}=100+\frac{10000}{2 \cdot 9.8}=100+510=610 \mathrm{~m}
$$

Answer.

$$
h_{\max }=h_{0}+\frac{v_{0}^{2}}{2 g}=610 \mathrm{~m}
$$

