Answer on Question \#51988 - Physics - Other

Question.

An object is thrown upward from the edge of a building with a velocity of $20 \mathrm{~m} / \mathrm{s}$. Where will the object be 3 s after it was thrown.
Given:
$v_{0}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$
$t_{0}=3 \mathrm{~s}$
Find:
$h\left(t_{0}\right)=$?

Solution.

By definition:

$$
x=\frac{a t^{2}}{2}+v_{0} t+x_{0}
$$

In our case,

$$
h=v_{0} t-\frac{g t^{2}}{2}
$$

So,

$$
h\left(t_{0}\right)=v_{0} t_{0}-\frac{g t_{0}^{2}}{2}
$$

Calculate:

$$
h\left(t_{0}\right)=v_{0} t_{0}-\frac{g t_{0}^{2}}{2}=20 \cdot 3-\frac{9.8 \cdot 3^{2}}{2}=60-44.1=15.9 \mathrm{~m}
$$

Answer.

$h\left(t_{0}\right)=v_{0} t_{0}-\frac{g t_{0}^{2}}{2}=15.9 \mathrm{~m}$

