Answer on Question\#51985 - Physics - Other

Two vectors \vec{a} and \vec{b} have components, in arbitrary units, $a_{x}=3.2, a_{y}=1.6, b_{x}=0.5$, $b_{y}=4.5$. Find the angle between \vec{a} and \vec{b}.

Solution:
The dot product is given by

$$
\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \varphi
$$

Therefore

$$
\cos \varphi=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}=\frac{a_{x} b_{x}+a_{y} b_{y}}{\sqrt{a_{x}^{2}+a_{y}^{2}} \sqrt{b_{x}^{2}+b_{y}^{2}}}=\frac{3.2 \cdot 0.5+1.6 \cdot 4.5}{\sqrt{3.2^{2}+1.6^{2}} \sqrt{0.5^{2}+4.5^{2}}}=\frac{8.8}{\sqrt{262.4}}
$$

The angle between \vec{a} and \vec{b} is given by

$$
\varphi=\arccos \frac{8.8}{\sqrt{262.4}}=57.1^{\circ}
$$

Answer: 57.1 ${ }^{\circ}$.

