Answer on Question \#51972 - Physics - Other

Question.

A 2000 kg satellite orbits the earth at a height of 300 km . What is the speed of the satellite and its period? TakeG $=6.67 \times 10-11 \mathrm{Nm} 2 / \mathrm{kg} 2$, Mass of the earth is $5.98 \times 1024 \mathrm{~kg}$.

Given:
$m=2000 \mathrm{~kg}$
$h=300 \mathrm{~km}=3 \cdot 10^{5} \mathrm{~m}$
$G=6.67 \cdot 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$
$M=5.98 \cdot 10^{24} \mathrm{~kg}$
Find:
$v=$?
$T=$?

Solution.

If the satellite moves in circular motion, then the net centripetal force acting upon this orbiting satellite is given by the relationship:

$$
F_{n e t}=\frac{m v^{2}}{r}
$$

This net centripetal force is the result of the gravitational force that attracts the satellite towards the central body and can be represented as:

$$
F_{g r a v}=G \frac{m M}{r^{2}}
$$

The above expressions for centripetal force and gravitational force can be set equal to each other. Thus,

$$
\frac{m v^{2}}{r}=G \frac{m M}{r^{2}}
$$

Therefore,

$$
v=\sqrt{\frac{G M}{r}}
$$

In our case, $r=R+h$, where $R=6.37 \cdot 10^{6} m$. That's why,

$$
v=\sqrt{\frac{G M}{R+h}}
$$

By definition

$$
T=\frac{2 \pi}{\omega}
$$

And

$$
\omega=\frac{v}{r}=\frac{\sqrt{G M}}{(R+h)^{\frac{3}{2}}}
$$

So,

$$
T=\frac{2 \pi(R+h)^{\frac{3}{2}}}{\sqrt{G M}}
$$

Calculate:

$$
\begin{gathered}
v=\sqrt{\frac{G M}{R+h}}=\sqrt{\frac{6.67 \cdot 10^{-11} \cdot 5.98 \cdot 10^{24}}{6.67 \cdot 10^{6}}}=7730 \frac{\mathrm{~m}}{\mathrm{~s}} \\
T=\frac{2 \pi(R+h)^{\frac{3}{2}}}{\sqrt{G M}}=\frac{6.28 \cdot\left(6.67 \cdot 10^{6}\right)^{\frac{3}{2}}}{\sqrt{6.67 \cdot 10^{-11} \cdot 5.98 \cdot 10^{24}}}=5420 \mathrm{~s}
\end{gathered}
$$

Answer.

$v=\sqrt{\frac{G M}{R+h}}=7730 \frac{\mathrm{~m}}{\mathrm{~s}}$
$T=\frac{2 \pi(R+h)^{\frac{3}{2}}}{\sqrt{G M}}=5420 \mathrm{~s}$
http://www.AssignmentExpert.com/

