Answer on Question\#51970 - Physics - Other

Given that the mass and radius of Jupiter are respectively $M=1.90 \times 10^{27} \mathrm{~kg}$ and $R=7.15 \times$ $10^{4} \mathrm{~km}$, calculate the escape velocity from the surface of the planet.

Solution:

The escape velocity of the ball with mass m and radius r is given by

$$
v=\sqrt{\frac{2 G m}{r}},
$$

where $G=6.672 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}$ - is the gravitational constant.
Therefore, the escape velocity of Jupiter is

$$
v_{e}=\sqrt{\frac{2 G M}{R}}=\sqrt{\frac{2 \cdot 6.672 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}} \cdot 1.90 \times 10^{27} \mathrm{~kg}}{7.15 \times 10^{4} \mathrm{~km}}}=59.5 \frac{\mathrm{~km}}{\mathrm{~s}}
$$

Answer: $v_{e}=\sqrt{\frac{2 G M}{R}}=59.5 \frac{\mathrm{~km}}{\mathrm{~s}}$.

