

## Answer on Question #51967 – Physics – Other

### Question.

A 40 N force applied at an angle of 37 degrees above the horizontal pulls a 5-kg box on a horizontal floor. The acceleration of the box is 3m/s<sup>2</sup>. How large a frictional force must be retarding the motion of the box.

Given:

$$F = 40 \text{ N}$$

$$m = 5 \text{ kg}$$

$$a = 3 \frac{\text{m}}{\text{s}^2}$$

$$\alpha = 37^\circ$$

Find:

$$F_{fr} = ?$$

### Solution.

Let remember Newton's second law:

$$\sum_i F_i = ma$$

Projection on horizontal axis gives:

$$F \cos \alpha - F_{fr} = ma$$

Therefore,

$$F_{fr} = F \cos \alpha - ma$$

Calculate:

$$F_{fr} = 40 \cdot 0.8 - 5 \cdot 3 = 32 - 15 = 17 \text{ N}$$

### Answer.

$$F_{fr} = F \cos \alpha - ma = 17 \text{ N}$$