The resultant of vectors \vec{A} and \vec{B} has a magnitude of 20 units. \vec{A} has a magnitude of 8 units, and the angle between \vec{A} and \vec{B} is $\varphi = 40^{\circ}$. Calculate the magnitude of \vec{B} .

Solution:

Since $\left(\vec{A} + \vec{B}\right)^2 = \left|\vec{A} + \vec{B}\right|^2$, we obtain

$$|\vec{A}|^{2} + 2|\vec{A}| \cdot |\vec{B}| \cos \varphi + |\vec{B}|^{2} = |\vec{A} + \vec{B}|^{2}$$

Or equivalently

$$|\vec{A}|^{2}\cos^{2}\varphi + 2|\vec{A}| \cdot |\vec{B}|\cos\varphi + |\vec{B}|^{2} = |\vec{A} + \vec{B}|^{2} - |\vec{A}|^{2}\sin^{2}\varphi$$

This equation has only one positive root:

$$\left|\vec{B}\right| = \sqrt{\left|\vec{A} + \vec{B}\right|^2 - \left|\vec{A}\right|^2 \sin^2 \varphi} - \left|\vec{A}\right| \cos \varphi$$

Since $\left| \vec{A} + \vec{B} \right| = 20, \left| \vec{A} \right| = 8$ and $\varphi = 40^\circ$, we obtain

$$\left|\vec{B}\right| = \sqrt{20^2 - 8^2 \sin^2 40^\circ} - 8\cos 40^\circ = 13.2$$

<u>Answer:</u> $\left|\vec{B}\right| = \sqrt{\left|\vec{A} + \vec{B}\right|^2 - \left|\vec{A}\right|^2 \sin^2 \varphi} - \left|\vec{A}\right| \cos \varphi = 13.2.$

http://www.AssignmentExpert.com/