

Answer on Question #51961 - Physics - Other

The resultant of vectors \vec{A} and \vec{B} has a magnitude of 20 units. \vec{A} has a magnitude of 8 units, and the angle between \vec{A} and \vec{B} is $\varphi = 40^\circ$. Calculate the magnitude of \vec{B} .

Solution:

Since $(\vec{A} + \vec{B})^2 = |\vec{A} + \vec{B}|^2$, we obtain

$$|\vec{A}|^2 + 2|\vec{A}| \cdot |\vec{B}| \cos \varphi + |\vec{B}|^2 = |\vec{A} + \vec{B}|^2$$

Or equivalently

$$|\vec{A}|^2 \cos^2 \varphi + 2|\vec{A}| \cdot |\vec{B}| \cos \varphi + |\vec{B}|^2 = |\vec{A} + \vec{B}|^2 - |\vec{A}|^2 \sin^2 \varphi$$

This equation has only one positive root:

$$|\vec{B}| = \sqrt{|\vec{A} + \vec{B}|^2 - |\vec{A}|^2 \sin^2 \varphi - |\vec{A}| \cos \varphi}$$

Since $|\vec{A} + \vec{B}| = 20$, $|\vec{A}| = 8$ and $\varphi = 40^\circ$, we obtain

$$|\vec{B}| = \sqrt{20^2 - 8^2 \sin^2 40^\circ - 8 \cos 40^\circ} = 13.2$$

Answer: $|\vec{B}| = \sqrt{|\vec{A} + \vec{B}|^2 - |\vec{A}|^2 \sin^2 \varphi - |\vec{A}| \cos \varphi} = 13.2$.