Answer on Question 51956, Physics, Other

Question:

A 20 kg block on an inclined plane is pulled up the plane with rope tied to the block. The rope is at angle of 37° above the surface of the plane. The tension in the rope is 250 N and the frictional force on the block is 8.0 N . What is the acceleration of the block?

Solution:

Let's write all forces that acts on a the block:

$$
m \vec{g}+\vec{N}+\overrightarrow{F_{T}}+\overrightarrow{F_{f r}}=m \vec{a}
$$

Then projected the forces on axis x :

$$
F_{T} \cos \alpha-m g \sin \theta-F_{f r}=m a,
$$

From this equation we can find the acceleration of the block. Unfortunately, from the condition of the question we don't know the angle of inclination of the plane θ, so we find the acceleration of the block in symbolic form:

$$
a=\frac{F_{T} \cos \alpha-m g \sin \theta-F_{f r}}{m} .
$$

Answer:

$a=\frac{F_{T} \cos \alpha-m g \sin \theta-F_{f r}}{m}$.
http://www.AssignmentExpert.com/

