Answer on Question\#51955 - Physics - Other

A $m_{1}=15 \mathrm{~kg}$ block rests on the surface of a plane inclined at an of $\varphi=30^{\circ}$ to the horizontal. A light inextensible string passing over a small, smooth pulley at the top of the plane connects the block to another $m_{2}=13 \mathrm{~kg}$ block hanging freely. The coefficient of kinetic friction between the 15 kg block and the plane is $\mu=0.25$. Find the acceleration a of the blocks.

Solution:

The force of friction is acting downward, since the projection of weight of the block 1 on the inclined plane is smaller than the weight of block 2 :

$$
m_{1} g \sin \varphi=15 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \sin 30^{\circ}=75 \mathrm{~N}<130 \mathrm{~N}=13 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=\mathrm{m}_{2} g
$$

The normal reaction F_{n} is given by

$$
F_{n}=m_{1} g \cos \varphi
$$

The force of friction F_{f} is given by

$$
F_{f}=F_{n} \cdot \mu=m_{1} g \mu \cos \varphi
$$

Let's first apply Newton's second law to mass m_{1} (projection on the inclined plane, upward direction is positive)

$$
m_{1} a=T-F_{f}-m_{1} g \sin \varphi,
$$

where T - is the tension force of the string.
Let's now apply Newton's second law to mass m_{2} (projection on the vertical axis, downward direction is positive)

$$
m_{2} a=m_{2} g-T
$$

Summing the last two equations we obtain

$$
\left(m_{1}+m_{2}\right) a=m_{2} g-F_{f}-m_{1} g \sin \varphi
$$

Therefore the acceleration a of the blocks is (we put $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$)

$$
\begin{gathered}
a=\frac{m_{2} g-F_{f}-m_{1} g \sin \varphi}{m_{1}+m_{2}}=\frac{m_{2} g-m_{1} g \mu \cos \varphi-m_{1} g \sin \varphi}{m_{1}+m_{2}}= \\
=\frac{13 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-15 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.25 \cdot \cos 30^{\circ}-15 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \sin 30^{\circ}}{15 \mathrm{~kg}+13 \mathrm{~kg}}=0.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

Answer: $a=\frac{m_{2} g-m_{1} g \mu \cos \varphi-m_{1} g \sin \varphi}{m_{1}+m_{2}}=0.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

