## Answer on Question\#51954 - Physics - Other

A $m_{1}=2 \mathrm{~kg}$ and a $m_{2}=4 \mathrm{~kg}$ hang freely at opposite ends of a light inextensible string which passes over a small and light pulley fixed to a rigid support. Calculate the acceleration of the system.

## Solution:



Let's first apply Newton's second law to mass $m_{1}$ (projection on the axis $x$ )

$$
m_{1} a=T-m_{1} g
$$

Let's now apply Newton's second law to mass $m_{2}$ (projection on the axis $x$ )

$$
-m_{2} a=T-m_{2} g
$$

(the acceleration of the second mass has the opposite direction)
Expressing $T$ from the first equation we obtain

$$
T=m_{1} a+m_{1} g
$$

Substituting this into the second equation we obtain

$$
-m_{2} a=m_{1} a+m_{1} g-m_{2} g
$$

And finally

$$
a=\frac{m_{2}-m_{1}}{m_{1}+m_{2}} g
$$

If we take the acceleration of the free fall $g$ to be equal $9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, then we obtain

$$
a=\frac{m_{2}-m_{1}}{m_{1}+m_{2}} g=\frac{4 \mathrm{~kg}-2 \mathrm{~kg}}{2 \mathrm{~kg}+4 \mathrm{~kg}} 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=3.26 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer: $a=\frac{m_{2}-m_{1}}{m_{1}+m_{2}} g=3.26 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

