Answer on Question \#51944, Physics, Mechanics | Kinematics | Dynamics

Sand drops at the rate of $2000 \mathrm{~kg} / \mathrm{min}$. from the bottom of a hopper onto a belt conveyor moving horizontally at $250 \mathrm{~m} / \mathrm{min}$. Determine the force needed to drive the conveyor, neglecting friction

Solution:

The initial horizontal velocity of the sand is zero.
The final horizontal velocity is $250 \mathrm{~m} / \mathrm{min}=250 / 60 \mathrm{~m} / \mathrm{s}$.
The impulse of force is equal to the change in momentum of an object provided the mass is constant:

$$
\text { Impulse }=F \Delta t=m \Delta v
$$

Thus, the force is

$$
\begin{gathered}
F=\frac{m \Delta v}{\Delta t} \\
\frac{m}{\Delta t}=2000 \frac{\mathrm{~kg}}{\min }=\frac{2000}{60} \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{gathered}
$$

The momentum change per second is

$$
\frac{m \Delta v}{\Delta t}=\frac{2000 \cdot(250-0)}{60 \cdot 60}=138.9 \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~s}^{2}} .
$$

Thus,

$$
F=138.9 \mathrm{~N} .
$$

Answer: $F=139 \mathrm{~N}$

