Answer on Question \#51943, Physics, Other

A $30,000-\mathrm{kg}$ truck travelling at $10.0 \mathrm{~m} / \mathrm{s}$ collides with a $1700-\mathrm{kg}$ car travelling at $25 \mathrm{~m} / \mathrm{s}$ in the opposite direction. If they stick together after the collision, how fast and in what direction will they be moving

Solution:
Given:
$m_{1}=30000 \mathrm{~kg}$,
$m_{2}=1700 \mathrm{~kg}$,
$v_{1 i}=10 \mathrm{~m} / \mathrm{s}$,
$v_{2 i}=25 \mathrm{~m} / \mathrm{s}$,
$v_{f}=$?

The equation that denotes the conservation of momentum is:

$$
m_{1} v_{1 i}-m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f}
$$

where, $m_{1}=$ mass of object or body 1
$\mathrm{m}_{2}=$ mass of object or body 2
$v_{1 i}=$ initial velocity of object or body 1
$v_{2 i}=$ initial velocity of object or body 2
$v_{f}=$ final velocity of both the objects

The final velocity is given by

$$
\begin{gathered}
v_{f}=\frac{m_{1} v_{1 i}-m_{2} v_{2 i}}{m_{1}+m_{2}} \\
v_{f}=\frac{30000 \cdot 10-1700 \cdot 25}{30000+1700}=8.12 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: $v_{f}=8.12 \mathrm{~m} / \mathrm{s}$ in direction of truck travelling.

