Question

An object is thrown upward at an angle of 37° with a velocity of $10 \mathrm{~m} / \mathrm{s}$ from the top of a 20 m high building. Where, from the foot of the building, would it land?

Solution

$v_{0}=10 \mathrm{~m} / \mathrm{s} ; \quad \alpha=37^{0} ; \quad h_{0}=20 \mathrm{~m} ; \mathrm{l}-$?

$$
\begin{gathered}
O Y: y=h_{0}+v_{0} \sin (\alpha) t-\frac{g t^{2}}{2} \\
O X: x=v_{0} \cos (\alpha) t
\end{gathered}
$$

When $\mathrm{y}=0$ it means that object is on surface of Earth.

$$
\begin{gathered}
y=0=h_{0}+v_{0} \sin (\alpha) t_{f}-\frac{g t_{f}^{2}}{2} \\
t_{f}=\frac{v_{0} \sin (\alpha)}{g} \pm \frac{\sqrt{v_{0}^{2} \sin ^{2}(\alpha)+2 g h_{0}}}{g}
\end{gathered}
$$

We choose " + ", because if we choose "-" $: \mathrm{t}_{\mathrm{f}}<0$.

$$
\begin{aligned}
& l=v_{0} \cos (\alpha) t_{f}=v_{0} \cos (\alpha)\left(\frac{v_{0} \sin (\alpha)}{g}+\frac{\sqrt{v_{0}^{2} \sin ^{2}(\alpha)+2 g h_{0}}}{g}\right) \\
& I \approx 9^{*}(0.6+2.1) \mathrm{m}=24.3 \mathrm{~m}
\end{aligned}
$$

Answer: $\mathrm{I}=\mathbf{2 4 . 3} \mathbf{~ m}$.

