## Answer on Question \#51933-Physics-Field Theory

An ideal gas is contained in two metal cylinders $X$ and $Y$ connected by a tap which is initially closed. The volume and pressure of the gas in the cylinders are as attached.

|  | pressure $/ \mathrm{Pa}$ <br>  <br>  <br> $X$ | $5 \times 10^{5}$ |
| ---: | ---: | ---: |
| $Y$ | $2 \times 10^{5}$ | $11 \times 10^{-3}$ |
|  |  | $4 \times 10^{-3}$ |

When the tap connecting the two cylinders is opened, what will be the final pressure, in Pa , in the vessel? Assume that the temperature remains constant
$2.4 \times 105$
$3.5 \times 105$
$4.2 \times 105$
$5.0 \times 105$

## Solution

We have

$$
P_{X} V_{X}=\frac{m_{X}}{M} R T, P_{Y} V_{Y}=\frac{m_{Y}}{M} R T, P\left(V_{X}+V_{Y}\right)=\frac{\left(m_{X}+m_{Y}\right)}{M} R T .
$$

So,

$$
P_{X} V_{X}+P_{Y} V_{Y}=P\left(V_{X}+V_{Y}\right)
$$

Thus,

$$
P=\frac{P_{X} V_{X}+P_{Y} V_{Y}}{V_{X}+V_{Y}}=\frac{5 \cdot 10^{5} \cdot 11 \cdot 10^{-3}+2 \cdot 10^{5} \cdot 4 \cdot 10^{-3}}{(11+4) \cdot 10^{-3}}=4.2 \cdot 10^{5} \mathrm{~Pa}
$$

Answer: 4. $2 \cdot 10^{5} \mathrm{~Pa}$.

