Answer on Question \#51929-Physics-Field Theory

The specific heat of a substance at its boiling point or melting point

0

infinity
negative
between 0 and 1

Solution

The specific heat of a substance at its boiling point or melting point is infinity, because $\Delta T=0$ but $\Delta Q \neq 0$ at these points in the formula for specific heat:

$$
C=\frac{\Delta Q}{m \Delta T} \sim \frac{1}{\Delta T} \rightarrow \infty
$$

Answer: infinity.

10 Mass of gas is $m=300 \mathrm{~g}=0.3 \mathrm{~kg}$ and its specific heat at constant volume is $750 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. if gas is heated through $75^{\circ} \mathrm{C}$ at constant pressure of $105 \mathrm{~N} /\left\{\mathrm{m}^{\wedge} 2\right\}$, it expands by volume $\Delta V=0.08 \cdot 10^{6} \mathrm{~cm}^{3}=0.08 \mathrm{~m}^{3}$. Find CP/CV.

1.4

1.374

1.474

1.5

Solution

$$
m \mathrm{C}_{\mathrm{P}} \Delta t=m \mathrm{C}_{\mathrm{V}} \Delta t+p \Delta V
$$

Thus

$$
\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=1+\frac{p \Delta V}{m \mathrm{C}_{\mathrm{V}} \Delta t}=1+\frac{10^{5} \cdot 0.08}{0.3 \cdot 750 \cdot 75}=1.474
$$

Answer: 1. 474.

11 A solid ball with a mass $m=0.53 \mathrm{~kg}$ floats in a tank of water. The ball is made of material with a density of $400 \mathrm{~kg} / \mathrm{m} 3$. The density of water is $1000 \mathrm{~kg} / \mathrm{m} 3$. What fraction of the volume of the ball is below the waterline?

Solution

The fraction of the volume of a floating object that is below the fluid surface is equal to the ratio of the density of the object to that of the fluid.

So,

$$
\frac{V_{\text {below }}}{V}=\frac{400 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.4
$$

Answer: 0. 4.

12 A slab of wood with mass $m=1.7 \mathrm{~kg}$ floats 78% submerged. The density of water is $1000 \mathrm{~kg} / \mathrm{m} 3$. What is the density of the wood?

$720 \mathrm{~kg} / \mathrm{m} 3$

$780 \mathrm{~kg} / \mathrm{m} 3$
$850 \mathrm{~kg} / \mathrm{m} 3$
$900 \mathrm{~kg} / \mathrm{m} 3$

Solution

The fraction of the volume of a floating object that is below the fluid surface is equal to the ratio of the density of the object to that of the fluid.

So,

$$
\frac{V_{\text {below }}}{V}=0.78=\frac{\rho_{\text {wood }}}{\rho_{\text {water }}}
$$

Thus,

$$
\rho_{\text {wood }}=0.78 \cdot 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=780 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Answer: $780 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$.

