Answer on Question \#51926-Physics-Field Theory

The difference between the principal specific heats of nitrogen is $300 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{K}$ and ratio of the two specific heats is 1.4. Then the CP is
$1050 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{K}$
$650 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{K}$
$750 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{K}$
$150 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{K}$

Solution

$$
\begin{gathered}
C_{P}-C_{V}=300 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{K}} ; \frac{C_{P}}{C_{V}}=1.4 . \\
\mathrm{C}_{\mathrm{P}}\left(1-\frac{1}{\frac{C_{P}}{C_{V}}}\right)=C_{P}-C_{V} . \\
\mathrm{C}_{\mathrm{P}}=\frac{C_{P}-C_{V}}{\left(1-\frac{1}{\frac{C_{P}}{C_{V}}}\right)}=\frac{300 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{K}}}{1-\frac{1}{1.4}}=1050 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{K}} .
\end{gathered}
$$

Answer: $1050 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{K}\right)$.

17 CP and CV denote the molar specific heats of a gas at constant pressure and at constant volume respectively. If and $C P / C V=\gamma$, then $C V$ is equal to
$R /(\gamma-1)$
$(\nu-1) / R$

Nosolution
373.2oC

Solution

$$
\begin{gathered}
C_{P}-C_{V}=R ; \frac{C_{P}}{C_{V}}=\gamma . \\
\mathrm{C}_{\mathrm{V}}\left(\frac{C_{P}}{C_{V}}-1\right)=R . \\
\mathrm{C}_{\mathrm{V}}=\frac{R}{(\gamma-1)} .
\end{gathered}
$$

Answer: R/(($\boldsymbol{\gamma}-1))$.

18 A gas is taken in a sealed container at 300 K . it is heated at constant volume to a temperature 600 K . the mean K.E. of its molecules is

Halved

Doubled
Tripled
Quadrupled

Solution

The mean K.E. of gas molecules $\sim T$. Thus $\frac{T^{\prime}}{T}=\frac{600 K}{300 K}=2$. So, it is doubled.
Answer: Doubled.

19 R.M.S velocity of a gas molecule of mass m at given temperature is proportional to mo
m
$m^{\left(\frac{1}{2}\right)}$
$\frac{1}{m^{\left(\frac{1}{2}\right)}}$

Solution

R.M.S velocity of a gas molecule of mass m is

$$
v_{r m s}=\sqrt{\frac{3 k T}{m}}
$$

So, R.M.S velocity of a gas molecule of mass m at given temperature is proportional to $\frac{1}{m^{\left(\frac{1}{2}\right)}}$.
Answer: 1/m^((1/2)).

20 The mean kinetic energy of one gram-mole of a perfect gas at absolute temperature T is
0.5 kT
0.5RT
1.5 kT
1.5RT

Solution

$$
K E_{\text {avg }}(\text { per mole })=\frac{3}{2} R T .
$$

So, the mean kinetic energy of one gram-mole of a perfect gas at absolute temperature T is 1.5 RT .

Answer: 1.5RT.
http://www.AssignmentExpert.com/

