Answer on Question \#51924-Physics-Field Theory

Expansion joints are used for materials that easily expand and contract depending upon its temperature. How much expansion can take place for a brass pipe 25.8 m long that experiences temperature changes of $75.2^{\circ} \mathrm{C}$?
3.44 cm 5.90 cm 3.69 cm 1.23 cm

Solution

Linear expansion formula is

$$
l=l_{0}(1+\alpha \Delta T)
$$

where l is the length after expansion, l_{0} is the length before expansion, ΔT is the change in temperature, α is the coefficient of linear expansion.

The coefficient of linear expansion for brass is

$$
\alpha=0.000019 \frac{1}{{ }^{\circ} \mathrm{C}} .
$$

So,

$$
\Delta l=l_{0} \alpha \Delta T=25.8 \mathrm{~m} \cdot 0.000019 \frac{1}{{ }^{\circ} \mathrm{C}} \cdot 75.2^{\circ} \mathrm{C}=0.0369 \mathrm{~m}=3.69 \mathrm{~cm}
$$

Answer: 3.69 cm .

