Answer on Question 51848, Physics, Other

18. A ray of light travels from air to glass. The incident ray makes an angle 45° while the refracted ray makes an angle of 30° with the normal to the interface. The speed of light in air is $3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$. What is the speed of light in glass?
a) $2.12 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
b) $4.24 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
c) $3.73 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
d) $3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$

Solution:

From the Snell's law we have:

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}}=\frac{v_{1}}{v_{2}},
$$

where, $\theta_{1}=45^{\circ}$ is the angle of incidence, $\theta_{2}=30^{\circ}$ is the angle of refraction, v_{1} is the speed of light in air, v_{2} is the speed of light in glass, n_{1} is the refractive index of air, n_{2} is the refractive index of glass.

Thus, we can find the speed of light in glass:

$$
v_{2}=v_{1} \frac{\sin \theta_{2}}{\sin \theta_{1}}=3.0 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{\sin 30^{\circ}}{\sin 45^{\circ}}=3.0 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{0.5}{0.707}=2.12 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: a) $2.12 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$.
19. A 9 V battery is short-circuited. The potential difference across the battery is found to be 8 V , and the current is 5 A . What is the internal resistance of the battery?
a) 0.1Ω
b) 0.2Ω
c) 0.3Ω
d) 0.4Ω

Solution:

Let us consider the short-circuited battery in the figure. The voltage V of the battery is defined as the difference in electric potential between its positive and negative terminals - the points A and B, respectively. As we move from B to A, the electric potential increases by $+\mathcal{E}$ volts as we cross the electromotive force, but then decreases by $I r$ volts as we cross the internal resistor. The voltage drop across the resistor follows from Ohm's law, which implies that the drop in voltage across a resistor R, carrying a current I, is $I R$ in the direction in which the current flows. Therefore, the voltage V of the battery is related to its electromotive force \mathcal{E} and internal resistance r as:

$$
\begin{gathered}
V=\varepsilon-I r \\
r=\frac{\varepsilon-V}{I}=\frac{9 V-8 V}{5 A}=\frac{1 V}{5 A}=0.2 \Omega
\end{gathered}
$$

Answer: b) 0.2Ω.
20. Ohm's law relates potential difference with?
a) power
b) energy
c) current
d) time

Answer: Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points. So, the answer is c) current.
http://www.AssignmentExpert.com/

