Answer on Question \#51857-Physics-Mechanics-Kinematics-Dynamics

Two vectors $a \vec{a}$ and $b \vec{b}$ have components, in arbitrary units, $a x=3.2, a y=1.6, b x=0.5, b y=4.5$. Find the angle between $a \overrightarrow{a n d} b \vec{~}$

33o 28o 57o 62o

Solution

The scalar product of two vectors is

$$
(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{~b}})=|\overrightarrow{\mathrm{a}}| \cdot|\overrightarrow{\mathrm{b}}| \cos \alpha=\left(a_{x} b_{x}+a_{y} b_{y}\right)
$$

where α is the angle between \vec{a} and $\vec{b},|\vec{a}|$ is the length of $\vec{a},|\vec{b}|$ is the length of \vec{b}.

Thus,

$$
\alpha=\cos ^{-1}\left(\frac{a_{x} b_{x}+a_{y} b_{y}}{\sqrt{a_{x}^{2}+a_{y}^{2}} \sqrt{b_{x}^{2}+b_{y}^{2}}}\right)=\cos ^{-1}\left(\frac{3.2 \cdot 0.5+1.6 \cdot 4.5}{\sqrt{3.2^{2}+1.6^{2}} \sqrt{0.5^{2}+4.5^{2}}}\right)=57^{\circ}
$$

Answer: 5°.
http://www.AssignmentExpert.com/

