Answer on Question \#51851-Physics-Mechanics-Kinematics-Dynamics

What are the dimensions of pressure gradient?
MLT-2

ML-2T-2

ML3T-2

M-2L2T-3

Solution

Pressure has dimension of

$$
[p]=\frac{N}{m^{2}} .
$$

Which is

$$
[p]=\frac{\mathrm{kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg}}{\mathrm{~s}^{2} \cdot m} .
$$

Hence, pressure gradient will have dimension

$$
[\nabla p]=[\nabla] \cdot[p]=\frac{1}{m} \cdot \frac{k g}{s^{2} \cdot m}=\frac{k g}{(s \cdot m)^{2}}=M L^{-2} T^{-2}
$$

Answer: $\boldsymbol{M L}^{-2} \boldsymbol{T}^{\mathbf{- 2}}$.
http://www.AssignmentExpert.com/

