Answer on Question \#51833-Physics-Other

1) A record turntable rotating at $34 \mathrm{rev} / \mathrm{min}$ slows down and stops in 30 s after the motor is turned off
a) Find its (constant) angular acceleration in revolution per minute-squared
b) How many revolutions does it make in this time?

Solution

a) An angular acceleration is

$$
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{\omega-0}{\Delta t}=\frac{34 \frac{\mathrm{rev}}{\mathrm{~min}}}{0.5 \mathrm{~min}}=68 \frac{\mathrm{rev}}{\mathrm{~min}^{2}}
$$

b)

$$
N=\omega \Delta t-\frac{\alpha \Delta t^{2}}{2}=\omega \Delta t-\frac{\omega \Delta t}{2}=\frac{\omega \Delta t}{2}=\frac{34 \frac{\mathrm{rev}}{\mathrm{~min}} \cdot 0.5 \mathrm{~min}}{2}=8.5 \mathrm{rev}
$$

Answer: a) $68 \frac{\text { rev }}{\min ^{2}}$ b) 8.5.
2) A uniform solid ball rolls smoothly along a floor, then up a ramp inclined at 30.0^{\wedge} (o). It momentarily stops when it has rolled 1.0 m along the ramp. What was its initial speed?

Solution

According to the conservation of energy law:

$$
E_{\text {translation }}+E_{\text {rotation }}=E_{\text {potential }}
$$

where $E_{\text {translation }}=\frac{m v^{2}}{2}$ is initial translational kinetic energy of the ball, $E_{\text {rotation }}=\frac{I \omega^{2}}{2}$ is initial rotational kinetic energy of the ball, $E_{\text {potential }}=m g h=m g l \sin 30$ is final gravitational potential energy of the ball. For a solid ball:

$$
I=\frac{2}{5} m r^{2}
$$

where m is a mass of ball, r is a radius of ball. So,

$$
E_{\text {rotation }}=\frac{I \omega^{2}}{2}=\frac{1}{2} \frac{2}{5} m r^{2} \omega^{2}=\frac{m v^{2}}{5}
$$

Thus,

$$
\begin{aligned}
\frac{m v^{2}}{2}+\frac{m v^{2}}{5} & =m g l \sin 30 \\
\frac{7}{10} v^{2} & =g l \cdot \frac{1}{2}
\end{aligned}
$$

The initial speed is

$$
v=\sqrt{\frac{5 g l}{7}}=\sqrt{\frac{5 \cdot 9.8 \cdot 1.0}{7}}=2.6 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $2.6 \frac{\mathrm{~m}}{\mathrm{~s}}$.

