Answer on Question \#51832, Physics, Mechanics | Kinematics |

Dynamics

Question:

1)A force of 6.0 N is used to accelerate a mass of 1.0 kg from rest for a distance of 12 m . The force is applied along the direction of travel.The coefficient of kinetic friction is 0.30 . What is the
a)work done by the applied force?
b)work done by friction?
2)A ball having a mass of 150 g strikes a wall a speed of $5.0 \mathrm{~m} / \mathrm{s}$ and rebounds with only 50% of its initial kinetic energy
a)What is the speed of the ball immediately after rebounding?
b)If the ball is in contact with the wall for 7 ms . What is the magnitude of the average force on the ball from the wall during this time interval

Answer:

1)

a) work done by the applied force equals:

$$
A=F d=6 \mathrm{~N} \cdot 12 \mathrm{~m}=72 \mathrm{~J}
$$

b) work done by friction equals:

$$
A_{f r}=F_{f r} d \cos 180=-\mu m g d=-0.3 \cdot 1 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} 12 \mathrm{~m}=35.3
$$

2)

a) Final kinetic energy equals:

$$
T_{f}=\frac{T_{i}}{2}=\frac{\frac{m v_{i}^{2}}{2}}{2}=\frac{m v_{f}^{2}}{2}
$$

Therefore:

$$
v_{f}^{2}=\frac{v_{i}^{2}}{2}
$$

the speed of the ball immediately after rebounding equals:

$$
v_{f}=\frac{v_{i}}{\sqrt{2}}=3.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

b) Change of momentum equals:

$$
\Delta p=m\left(v_{i}+v_{f}\right)=F \Delta t
$$

average force on the ball equals:

$$
F=\frac{m v_{i}\left(1+\frac{1}{\sqrt{2}}\right)}{\Delta t}=183 \mathrm{~N}
$$

