Answer on Question \#51827, Physics, Mechanics

Which of the following is NOT correct?
$\vec{k} \cdot \vec{k}=1$
$\vec{i} \times j \vec{j}=\vec{k}$
$i \times \vec{k}=-j \vec{j}$
$j \vec{j}=0$

Solution:

Unit vectors may be used to represent the axes of a Cartesian coordinate system. For instance, the unit vectors in the direction of the x, y, and z axes of a three dimensional Cartesian coordinate system are

$$
\hat{\mathbf{i}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \hat{\mathbf{j}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \hat{\mathbf{k}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

We first calculate that the dot product of the unit vector \vec{l} with itself is unity

$$
\vec{i} \cdot \vec{i}=|\vec{i} \| \vec{i}| \cos (0)=1
$$

since the unit vector has magnitude $|\vec{i}|=1$ and $\cos (0)=1$. We note that the same rule applies for the unit vectors in the y and z directions:

$$
\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1
$$

The cross product is

$$
\boldsymbol{a} \times \boldsymbol{b}=|a||b| \sin t \boldsymbol{n}
$$

where n is a unit vector perpendicular to the plane in which a and b lie.
Since $\sin 0=0$ and $\sin 90=1$ and each vector is of unit length, we have

$$
\vec{i} \times \vec{i}=\vec{j} \times \vec{j}=\vec{k} \times \vec{k}=0 \text {, (the zero vector). }
$$

Also, $\vec{i} \times \vec{j}=\vec{k}$ and $\vec{j} \times \vec{k}=\vec{i}$ and $\vec{k} \times \vec{i}=\vec{j}$
while $\vec{j} \times \vec{i}=-\vec{k}$ and $\vec{k} \times \vec{j}=-\vec{i}$ and $\vec{i} \times \vec{k}=-\vec{j}$.

Answer: $\vec{j} \cdot \vec{j}=0$ is NOT correct.

