Answer on Question 51823, Physics, Mechanics | Kinematics | Dynamics

Question:

A man walks 5.0 m due east and then $10 \mathrm{~m} N 30^{\circ} \mathrm{E}$. Find his resultant displacement?

Solution:

The displacement \boldsymbol{R} is the resultant when the two individual displacements \boldsymbol{A} and \boldsymbol{B} are added. We can find the magnitude of the resultant displacement \boldsymbol{R} from the law of cosines applied to the triangle:

$$
\begin{aligned}
& \theta=180^{\circ}-30^{\circ}=150^{\circ}, \\
& R=\sqrt{A^{2}+B^{2}-2 A B \cos \theta}=\sqrt{(5 m)^{2}+(10 m)^{2}-2 \cdot 5 m \cdot 10 m \cdot \cos 150^{\circ}}= \\
&=14.6 m .
\end{aligned}
$$

Then, we can find the direction of the resultant displacement \boldsymbol{R} from the law of sines:

$$
\begin{gathered}
\frac{\sin \beta}{B}=\frac{\sin \theta}{R}, \\
\sin \beta=\frac{B}{R} \sin \theta=\frac{10 m}{14.6 m} \cdot \sin 150^{\circ}=0.3425, \\
\beta=\arcsin (0.3425)=20^{\circ} .
\end{gathered}
$$

Answer:

The magnitude of the resultant displasement is $R=14.6 \mathrm{~m}$, direction is $N 20^{\circ} \mathrm{E}$.

