Question 5177

A fizzy drink can bobs up and down in water due to waves travelling across the surface. The waves travel at $0.7 \mathrm{~ms}-1$ and have a wavelength of 0.5 m and an amplitude of 0.1 m . Calculate the maximum velocity of the can?

Solution:

Lets write the equation for monochromatic wave, with given amplitude, frequency and wavelength:

$$
\begin{equation*}
y(x, t)=A \sin (k x+\omega t)=A \sin \left(\frac{2 \pi}{\lambda} x+2 \pi v t\right) \tag{1}
\end{equation*}
$$

We can find the $\quad v_{y}$, by differentiating (1):

$$
\begin{equation*}
v_{y}=\frac{\partial y}{\partial t}=A \cdot 2 \pi v \cdot \cos \left(\frac{2 \pi}{\lambda} x+2 \pi v t\right) \tag{2}
\end{equation*}
$$

Hence, the maximum $\quad v_{y}$ is

$$
\begin{equation*}
v_{y ; \max }=A \cdot 2 \pi v \tag{3}
\end{equation*}
$$

Also, we have a phase velocity for a monochromatic wave:

$$
\begin{equation*}
v_{p}=\frac{\omega}{k}=\lambda \cdot v \tag{4}
\end{equation*}
$$

So, the maximum speed for the can is given by:

$$
\begin{equation*}
v_{\max }=\sqrt{\left(v_{y ; \max }^{2}+v_{p}^{2}\right)}=v \sqrt{\left(4 \pi^{2} A^{2}+\lambda^{2}\right)} \tag{5}
\end{equation*}
$$

Using numeric values given, and putting it into (5), we obtain:

$$
v_{\max }=5.62 \cdot 10^{-4} \frac{m}{s}
$$

