Answer on Question \#51730, Physics, Molecular Physics | Thermodynamics

Poisson's ratio is 0.4 , longitudinal strain is $2 * 10^{-3}$, so what will be the volume percentage?

Solution:

Poisson's Ratio can be expressed as

$$
v=-\frac{\varepsilon_{t}}{\varepsilon_{l}}
$$

where

$$
\begin{aligned}
& v=\text { Poisson's ratio } \\
& \varepsilon_{\mathrm{t}}=\text { transverse strain } \\
& \varepsilon_{\mathrm{l}}=\text { longitudinal or axial strain }
\end{aligned}
$$

Strain can be expressed as

$$
\varepsilon=\frac{\Delta L}{L}
$$

where
$\Delta L=$ change in length ($m, f t$)
$L=$ initial length ($m, f t$)
For a cube stretched in the x-direction with a length increase of $\Delta \mathrm{L}$ in the x direction, and a length decrease of ΔL^{\prime} in the y and z directions

$$
v \approx \frac{\Delta L^{\prime}}{\Delta L}
$$

The relative change of volume $\Delta \mathrm{V} / \mathrm{V}$ of a cube due to the stretch of the material can now be calculated. Using $V=L^{\wedge} 3$ and

$$
\begin{aligned}
& V+\Delta V=(L+\Delta L)\left(L-\Delta L^{\prime}\right)^{2} \\
& \frac{\Delta V}{V}=\left(1+\frac{\Delta L}{L}\right)\left(1-\frac{\Delta L^{\prime}}{L}\right)^{2}-1
\end{aligned}
$$

Using the above derived relationship between $\Delta \mathrm{L}$ and $\Delta \mathrm{L}^{\prime}$:

$$
\frac{\Delta V}{V}=\left(1+\frac{\Delta L}{L}\right)^{1-2 v}-1
$$

and for very small values of $\Delta \mathrm{L}$ and $\Delta \mathrm{L}^{\prime}$, the first-order approximation yields:

$$
\frac{\Delta V}{V} \approx(1-2 v) \frac{\Delta L}{L}
$$

Hence,

$$
\frac{\Delta V}{V} \approx(1-2 * 0.4) * 2 * 10^{-3}=0.0004 \text { or } 0.04 \%
$$

Answer: $\frac{\Delta V}{V}=0.04 \%$

