Answer on Question 51680, Physics, Optics

11. What type of image is formed when an object is placed at a distance of 1.5 focal lengths from a convex mirror?
a) erect and virtual
b) inverted and virtual
c) erect and real
d) inverted and real

Answer:

The image on a convex mirror is always virtual, and as we can see when an object is placed at a distance of 1.5 focal lengths from a convex mirror, the image is virtual and erect. Correct answer: a) erect and virtual.
12. Where is the image located when an object is 60 cm from a convex mirror with a focal length of 20 cm ?
a) 15 cm behind
b) 30 cm behind
c) 60 cm behind
d) 15 cm in front

Solution:

From the mirror equation we have:

$$
\begin{gathered}
\frac{1}{d_{\text {image }}}+\frac{1}{d_{\text {object }}}=\frac{1}{-f} \\
\frac{1}{d_{\text {image }}}+\frac{1}{60 \mathrm{~cm}}=\frac{1}{-20 \mathrm{~cm}} \\
\frac{1}{d_{\text {image }}}=-\frac{1}{20 \mathrm{~cm}}-\frac{1}{60 \mathrm{~cm}}=-\frac{1}{15 \mathrm{~cm}} \\
d_{\text {image }}=-15 \mathrm{~cm}
\end{gathered}
$$

The negative sign of $d_{\text {image }}$ indicate that image is located behind the convex mirror.
Answer: a) 15 cm behind.
13. If the Sun is 150 million kilometers away from the Earth, how long does it take sunlight to reach the Earth?
a) 0.5 s
b) 1500 s
c) 45 s
d) 500 s

Solution:

In order to find time that needs sunlight to reach the Earth we divide the distance to the Sun by the speed of light and obtain:

$$
t=\frac{d}{c}=\frac{1.5 \cdot 10^{11} \mathrm{~m}}{3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=500 \mathrm{~s}
$$

Answer: d) 500s
14. The critical angle for total internal reflection at an air-water interface is approximately 48°. In which of the following situations will total internal reflection occur?
a) light incident in water at 40°
b) light incident in water at 55°
c) light incident in air at 40°
d) light incident in air at 55°

Solution:

The total internal reflection occurs when light attempts to move from a medium having a given refractive index to a medium having a lover refractive index (in our case from water with $n_{1}=1.33$ to air with $n_{2}=1.0$).

As we can see in the picture for $\theta_{1}>\theta_{c}$ there is no reflected ray. Thus, in order to occur the total internal reflection we need b) light incident in water at 55°.

Answer: b) light incident in water at 55°.
15. How many diopters are there for a converging lens with a focal length of 0.4 m ?
a) -2.5
b) -0.4
c) +0.4
d) +2.5

Solution:

The power of a lens is defined as the reciprocal of its focal length in meters:

$$
P=\frac{1}{f}=\frac{1}{0.4 m}=+2.5 \text { diopters }
$$

Because we have a converging lens (a positive lens) the correct answer is d) +2.5
Answer: d) +2.5

http://www.AssignmentExpert.com/

