

## Answer on Question 51680, Physics, Optics

11. What type of image is formed when an object is placed at a distance of 1.5 focal lengths from a convex mirror?

- a) erect and virtual
- b) inverted and virtual
- c) erect and real
- d) inverted and real

**Answer:**



The image on a convex mirror is always virtual, and as we can see when an object is placed at a distance of 1.5 focal lengths from a convex mirror, the image is virtual and erect. Correct answer: a) erect and virtual.

12. Where is the image located when an object is  $60\text{cm}$  from a convex mirror with a focal length of  $20\text{cm}$ ?

- a)  $15\text{cm}$  behind
- b)  $30\text{cm}$  behind
- c)  $60\text{cm}$  behind
- d)  $15\text{cm}$  in front

**Solution:**

From the mirror equation we have:

$$\frac{1}{d_{image}} + \frac{1}{d_{object}} = \frac{1}{-f'}$$

$$\frac{1}{d_{image}} + \frac{1}{60\text{cm}} = \frac{1}{-20\text{cm}},$$

$$\frac{1}{d_{image}} = -\frac{1}{20\text{cm}} - \frac{1}{60\text{cm}} = -\frac{1}{15\text{cm}},$$

$$d_{image} = -15\text{cm}.$$

The negative sign of  $d_{image}$  indicate that image is located behind the convex mirror.

**Answer:** a) 15cm behind.

13. If the Sun is 150 million kilometers away from the Earth, how long does it take sunlight to reach the Earth?

- a) 0.5s
- b) 1500s
- c) 45s
- d) 500s

**Solution:**

In order to find time that needs sunlight to reach the Earth we divide the distance to the Sun by the speed of light and obtain:

$$t = \frac{d}{c} = \frac{1.5 \cdot 10^{11}\text{m}}{3 \cdot 10^8 \frac{\text{m}}{\text{s}}} = 500\text{s}.$$

**Answer:** d) 500s

14. The critical angle for total internal reflection at an air-water interface is approximately  $48^\circ$ . In which of the following situations will total internal reflection occur?

- a) light incident in water at  $40^\circ$
- b) light incident in water at  $55^\circ$
- c) light incident in air at  $40^\circ$
- d) light incident in air at  $55^\circ$

**Solution:**

The total internal reflection occurs when light attempts to move from a medium having a given refractive index to a medium having a lower refractive index (in our case from water with  $n_1 = 1.33$  to air with  $n_2 = 1.0$ ).



As we can see in the picture for  $\theta_1 > \theta_c$  there is no reflected ray. Thus, in order to occur the total internal reflection we need b) light incident in water at  $55^\circ$ .

**Answer:** b) light incident in water at  $55^\circ$ .

15. How many diopters are there for a converging lens with a focal length of  $0.4m$ ?

- a)  $-2.5$
- b)  $-0.4$
- c)  $+0.4$
- d)  $+2.5$

**Solution:**

The power of a lens is defined as the reciprocal of its focal length in meters:

$$P = \frac{1}{f} = \frac{1}{0.4m} = +2.5 \text{ diopters}$$

Because we have a converging lens (a positive lens) the correct answer is d) +2.5

**Answer:** d) +2.5

<http://www.AssignmentExpert.com/>