Answer on Question \#51673, Physics, Mechanics | Kinematics | Dynamics

Assume that a tunnel is dug across the earth (radius R) passing through its center. Find the time a particle takes to cover the length of the tunnel if
a) it is projected into the tunnel with a velocity $(g R)^{\wedge} 1 / 2$
b) it is released from a height R above the tunnel
c) it is thrown vertically upward along the length of the tunnel with a speed $(g R)^{\wedge} 1 / 2$

Solution:

(a) Let T be the time period of the oscillatory motion of the particle, x_{t}, v_{t} and a_{t} the displacement from the center, velocity and acceleration at time t. Then

$$
a_{t}=\frac{F}{m}=G M \frac{x_{t}^{3}}{R^{3} x_{t}^{2}}=G M x_{t} / R^{3}
$$

The period of oscillation

$$
T=2 \pi\left(\frac{x_{t}}{a_{t}}\right)^{\frac{1}{2}}=2 \pi\left(\frac{R^{3}}{G M}\right)^{\frac{1}{2}}=2 \pi\left(\frac{R}{g}\right)^{\frac{1}{2}}
$$

The angular velocity

$$
\omega=\left(\frac{g}{R}\right)^{\frac{1}{2}}
$$

If A be the amplitude of the motion then

$$
v_{t}^{2}=\omega^{2}\left(A^{2}-R^{2}\right)=\frac{g\left(A^{2}-R^{2}\right)}{R}
$$

But at the surface of the Earth we have $v_{t}=(g R)^{\frac{1}{2}}$

$$
\begin{gathered}
g R=\frac{g\left(A^{2}-R^{2}\right)}{R} \\
R^{2}=A^{2}-R^{2} \\
A=\sqrt{2} R
\end{gathered}
$$

Let $t=t_{1}$ and $t=t_{2}$ be two successive instants when value of x_{t} changes from $+R$ to $-R$ and therefore $t_{2}-t_{1}$ is the time taken to cover the length o the tunnel. But

$$
\begin{gathered}
R=\sqrt{2} R \sin \omega t_{1} \\
\sin \omega t_{1}=\frac{1}{\sqrt{2}} \\
\omega t_{1}=\frac{3 \pi}{4}
\end{gathered}
$$

and

$$
\begin{gathered}
-R=\sqrt{2} R \sin \omega t_{2} \\
\sin \omega t_{2}=-\frac{1}{\sqrt{2}} \\
\omega t_{2}=\frac{5 \pi}{4} \\
\omega t_{2}-\omega t_{1}=\frac{\pi}{2}
\end{gathered}
$$

$$
t_{2}-t_{1}=\frac{\pi}{2 \omega}=\frac{\pi}{2}\left(\frac{R}{g}\right)^{\frac{1}{2}}
$$

b) In this case the particle is released from height R above the tunnel being a case of free fall motion till the particle reaches surface of the earth. The velocity of the particle when it reaches the surface of the earth is

$$
v=(2 g R)^{\frac{1}{2}}
$$

Therefore

$$
\begin{gathered}
2 g R=\frac{g\left(A^{2}-R^{2}\right)}{R} \\
2 R^{2}=A^{2}-R^{2} \\
A=\sqrt{3} R
\end{gathered}
$$

Let $t=t_{1}$ and $t=t_{2}$ be two successive instants when value of x_{t} changes from $+R$ to $-R$ and therefore $t_{2}-t_{1}$ is the time taken to cover the length o the tunnel. But

$$
\begin{gathered}
R=\sqrt{3} R \sin \omega t_{1} \\
\sin \omega t_{1}=\frac{1}{\sqrt{3}} \\
\omega t_{1}=\sin ^{-1} \frac{1}{\sqrt{3}}=0.615 \mathrm{rad}
\end{gathered}
$$

and

$$
\begin{gathered}
-R=\sqrt{3} R \sin \omega t_{2} \\
\sin \omega t_{2}=-\frac{1}{\sqrt{3}} \\
\omega t_{2}=-0.615 \mathrm{rad} \\
\omega t_{1}-\omega t_{2}=0.615 * 2=1.23 \mathrm{rad} \\
t_{2}-t_{1}=\frac{1.23}{\omega}=1.23\left(\frac{R}{g}\right)^{\frac{1}{2}}
\end{gathered}
$$

c) In this case the particle is thrown up with velocity $(g R)^{\frac{1}{2}}$ it comes back to the surface of the earth with the same speed and then covers the length of the tunnel in the same time as in case (a) above.

