Answer on question \#51661, Physics, Mechanics - Kinematics Dynamics

Question A stream of water flowing horizontally with a speed of $10 \mathrm{~m} / \mathrm{s}$ gushes out of a tube of crossectional area 10 cm 2 and hits a vertical wall nearby the force extracted the wall by impact of water (assume it rebounded) 1) 500 N .2$) 20 \mathrm{~N} .3) 100 \mathrm{~N}$.) 200 N

Solution basic assumptions are:
Dynamic pressure can be found as

$$
p=\frac{\rho v^{2}}{2}
$$

where $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ is density and $v=10 \mathrm{~m} / \mathrm{s}$ is velocity. To find force we have to multiply it by area $S=0.001 \mathrm{~m}^{3}$. And to take into account that stream is rebounded, we have to multiply whole thing by 2 . Hence,

$$
F=2 \cdot S \cdot \frac{\rho v^{2}}{2}=2 \cdot 0.001 \cdot \frac{1000 \cdot 10^{2}}{2}=100 \mathrm{~N}
$$

Answer is 3. 100 N .

