Answer on Question\#51648-Physics - Optics

A He-Ne laser emits a beam of diameter $d=2 \times 10^{-3} \mathrm{~m}$ and wavelength $\lambda=630 \mathrm{~nm}$. It is directed towards an aeroplane flying at a height of $H=11 \mathrm{~km}$. Calculate the diameter of the light patch produced on the surface of the aeroplane.

Solution:

The angle of diffraction (first minimum) of the laser with such diameter of the outlet is given by

$$
\sin \theta=1.22 \frac{\lambda}{d}
$$

Therefore the diameter of the light patch on the surface of the plane is

$$
D=H \cdot \sin \theta=1.22 \cdot H \frac{\lambda}{d}=1.22 \cdot 11000 \mathrm{~m} \frac{630 \cdot 10^{-9} \mathrm{~m}}{2 \cdot 10^{-3} \mathrm{~m}}=4.23 \mathrm{~m}
$$

Answer: $D=1.22 \cdot H \frac{\lambda}{d}=4.23 \mathrm{~m}$.

