Answer on Question \#51623, Physics, Mechanics | Kinematics | Dynamics

A boy and his father run together. Mass of the boy is half of his father; kinetic energy of father is half of his son. If the father increases his velocity $1 \mathrm{~m} / \mathrm{s}$, then the kinetic energy becomes equal of each. What is their initial velocity?

If they run with their own kinetic energy on a road which is inclined and the road makes an angle of 30 degree with horizontal, how much distance will each of them complete?

Solution:

We start with the given data. Let the father's mass be M, so that the son's mass must be equal to $\frac{1}{2} \mathrm{M}$. We put the father's velocity as V_{f} and the son's velocity as V_{s}.

We know that the equation to find kinetic energy, $K E$, is the following, where m is mass and v is velocity:

$$
\mathrm{KE}=\frac{\mathrm{mv}^{2}}{2}
$$

Based on the above information we can apply this to our problem.

$$
\frac{\mathrm{m}_{\mathrm{f}} V_{\mathrm{f}}^{2}}{2}=\frac{1}{2}\left(\frac{\mathrm{~m}_{\mathrm{f}} V_{\mathrm{s}}^{2}}{2}\right)
$$

From the noted equation we can express the value of V_{f}^{2}. Firstly we simplify the equation.

$$
\frac{V_{f}^{2}}{2}=\frac{1}{2}\left(\frac{V_{s}^{2}}{2}\right)
$$

We multiply both sides of the equation by 2 and obtained the following result.

$$
V_{f}^{2}=\frac{1}{2} V_{s}^{2}
$$

Now we have to construct the equation which takes into account the following condition, the father increases his velocity $1 \mathrm{~m} / \mathrm{s}$ and the kinetic energy becomes equal of each.

$$
\frac{1}{2}\left(\frac{\mathrm{~m}_{\mathrm{f}}\left(\mathrm{~V}_{\mathrm{f}}+1\right)^{2}}{2}\right)=\left(\frac{\mathrm{m}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}^{2}}{2}\right)
$$

Simplify the equation by opening the parenthesis.

$$
\frac{1}{2} V_{f}^{2}=\frac{1}{4}\left(V_{f}^{2}+2 V_{f}+1\right)
$$

Now we simplify by opening the parenthesis and combining like terms.

$$
\frac{1}{2} V_{f}^{2}-\frac{1}{4} V_{f}^{2}-\frac{1}{2} V_{f}-\frac{1}{4}=0
$$

Then we need to solve the obtained quadratic equation for V_{f}.

$$
\frac{1}{4} V_{f}^{2}-\frac{1}{2} V_{f}-\frac{1}{4}=0
$$

Multiply all terms by 4.

$$
\begin{gathered}
V_{f}^{2}-2 V_{f}-1=0 \\
V_{f_{1,2}}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

We determine the first root.

$$
\mathrm{V}_{\mathrm{f}_{1}}=\frac{2+\sqrt{(2)^{2}-4(1)(-1)}}{2(1)}=\frac{2+\sqrt{8}}{2}=1+\sqrt{2}=2.4142 \mathrm{~m} / \mathrm{s}
$$

We know that the second root will have the negative sign, thus, we accept the first solution.

$$
V_{f}=2.4142 \mathrm{~m} / \mathrm{s}
$$

Now we can calculate the son's velocity.

$$
\mathrm{V}_{\mathrm{s}}=2 \cdot(2.4142)=4.828 \mathrm{~m} / \mathrm{s}
$$

The next part of the task is to determine the distance if we know their kinetic energy on a road which is inclined and the road makes an angle of 30 degree with horizontal.

Firstly we determine the father's kinetic energy.

$$
\mathrm{KE}=\frac{\mathrm{m}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}^{2}}{2}=\frac{\mathrm{m}_{\mathrm{f}}(2.414)^{2}}{2}=2.914 m_{f}
$$

The distance to be held father will be equal

$$
\begin{gathered}
\text { Distance }=\frac{\mathrm{KE}}{\mathrm{~m}_{\mathrm{f}} g \sin \alpha}=\frac{\frac{\mathrm{m}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}^{2}}{2}}{\mathrm{~m}_{\mathrm{f}} g \sin \alpha}=\frac{\mathrm{m}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}^{2}}{2 \mathrm{~m}_{\mathrm{f}} g \sin \alpha}=\frac{\mathrm{V}_{\mathrm{f}}^{2}}{2 \mathrm{~g} \sin \alpha}=\frac{(2.414)^{2}}{10}= \\
=\frac{5.827}{10}=0.58 \mathrm{~m}
\end{gathered}
$$

Similarly we determine the distance for the son.

$$
\text { Distance }=\frac{V_{s}^{2}}{2 \mathrm{~g} \sin \alpha}=\frac{(4.828)^{2}}{10}=\frac{23.310}{10}=2.3 \mathrm{~m}
$$

