Answer on Question \#51583-Physics-Mechanics-Kinematics-Dynamics

Amplitude of vibrational of a particle in SHM with time period $T=1 \mathrm{sec}$ is $S=0.05 \mathrm{~m}$. average speed of the particle in one period is...

1) $0.4 \frac{\mathrm{~m}}{\mathrm{~s}}$. 2) $0.2 \frac{\mathrm{~m}}{\mathrm{~s}}$. 3) $0.1 \frac{\mathrm{~m}}{\mathrm{~s}}$. 4) $0.00 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Solution

An average speed of the particle in one period is always zero!

But we can prove this.

Let the displacement of a particle in SHM be

$$
x=A \cos (\omega t-\varphi)
$$

where A, the maximum value of the displacement, is called the amplitude of the motion. If
T is the time for one complete oscillation and φ is the phase angle, then the velocity v is

$$
v=\frac{d x}{d t}=-A \omega \sin (\omega t-\varphi)=-A \omega \sqrt{1-\frac{x^{2}}{A^{2}}}
$$

The acceleration of the particle is

$$
a=\frac{d v}{d t}=-A \omega^{2} \cos (\omega t-\varphi)=-\omega^{2} x
$$

Average speed of the particle in one period is

$$
\bar{v}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v(t) d t=\int_{t_{0}}^{t_{0}+T}(-A \omega \sin (\omega t-\varphi)) d t=\frac{1}{T}\left(x\left(t_{0}+T\right)-x\left(t_{0}\right)\right)
$$

But $x\left(t_{0}+T\right)=x\left(t_{0}\right)$ for periodic motion. Thus,

$$
\bar{v}=\frac{1}{T} \cdot 0=0
$$

Answer: 4) $0.00 \frac{\mathrm{~m}}{\mathrm{~s}}$.

