

Answer on Question #51583-Physics-Mechanics-Kinematics-Dynamics

Amplitude of vibrational of a particle in SHM with time period $T = 1 \text{ sec}$ is $S = 0.05 \text{ m}$. average speed of the particle in one period is...

1) $0.4 \frac{\text{m}}{\text{s}}$. 2) $0.2 \frac{\text{m}}{\text{s}}$. 3) $0.1 \frac{\text{m}}{\text{s}}$. 4) $0.00 \frac{\text{m}}{\text{s}}$.

Solution

An average speed of the particle in one period is always zero!

But we can prove this.

Let the displacement of a particle in SHM be

$$x = A \cos(\omega t - \varphi),$$

where A , the maximum value of the displacement, is called the amplitude of the motion. If

T is the time for one complete oscillation and φ is the phase angle, then the velocity v is

$$v = \frac{dx}{dt} = -A\omega \sin(\omega t - \varphi) = -A\omega \sqrt{1 - \frac{x^2}{A^2}}.$$

The acceleration of the particle is

$$a = \frac{dv}{dt} = -A\omega^2 \cos(\omega t - \varphi) = -\omega^2 x.$$

Average speed of the particle in one period is

$$\bar{v} = \frac{1}{T} \int_{t_0}^{t_0+T} v(t) dt = \int_{t_0}^{t_0+T} (-A\omega \sin(\omega t - \varphi)) dt = \frac{1}{T} (x(t_0 + T) - x(t_0)).$$

But $x(t_0 + T) = x(t_0)$ for periodic motion. Thus,

$$\bar{v} = \frac{1}{T} \cdot 0 = 0.$$

Answer: 4) $0.00 \frac{\text{m}}{\text{s}}$.