Answer on Question \#51573, Physics, Solid State Physics

Calculate the probability for an electron to be found at an energy of $\left(\mathrm{E}_{\mathrm{F}}+2 \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$ in a metal.

Solution

Electrons are particles with half-integer spin. And they obey Fermi-Dirac statistics. The function of Fermi-Dirac distribution is written as follows:

$$
P(E, T)=\frac{1}{1+\exp \left(\frac{E-E_{F}}{k T}\right)}
$$

where $P(E, T) \mathrm{P}(\mathrm{E}, \mathrm{T})$ - the probability that the electron occupies an energy level E, above or below the Fermi level E_{F}.

Then
$P\left(E_{F}+2 k_{B} T, T\right)=\frac{1}{1+\exp \left(\frac{E_{F}+2 k_{B} T-E_{F}}{k_{B} T}\right)}=\frac{1}{1+e^{2}} \approx 0.119=11.9 \%$
Answer: $P\left(E_{F}+2 k_{B} T, T\right)=\frac{1}{1+e^{2}} \approx 11.9 \%$

