Answer on Question \#51565, Physics, Solid State Physics

A crystal has a cubic unit cell of $4.2 \AA$. Using a wavelength of $1.54 \AA$ at what angle (2) would you expect to measure the (111) peak?

Solution

d-spacing equation for cubic is given by Eq.(1)

$$
\begin{equation*}
d=a / \sqrt{h^{2}+k^{2}+l^{2}}=a / \sqrt{1^{2}+1^{2}+1^{2}}=a / \sqrt{3} \tag{1}
\end{equation*}
$$

According Bragg`s law

$$
\begin{equation*}
2 d \sin \theta=m \lambda \tag{2}
\end{equation*}
$$

So, for

$$
\begin{equation*}
\theta=\arcsin \left(\frac{\lambda}{2 d}\right)=\arcsin \left(\frac{\lambda \sqrt{3}}{2 a}\right)=\arcsin \left(\frac{1.54 \sqrt{3}}{2 \cdot 4.2}\right) \approx 18^{0} \tag{3}
\end{equation*}
$$

Answer: $\theta \approx 18^{0}$

