Answer on Question \#51561, Physics, Solid State Physics

Derive an expression for the velocity of the transverse wave in the [100] direction in a cubic crystal.

Solution

For cubic crystals, the equation of motion can be written as:

$$
\begin{equation*}
\rho \ddot{u}_{x}=c_{11} \frac{\partial^{2} u_{x}}{\partial x^{2}}+c_{44}\left(\frac{\partial^{2} u_{x}}{\partial y^{2}}+\frac{\partial^{2} u_{x}}{\partial z^{2}}\right)+\left(c_{12}+c_{44}\right)\left(\frac{\partial^{2} u_{y}}{\partial x \partial y}+\frac{\partial^{2} u_{z}}{\partial x \partial z}\right) \tag{1}
\end{equation*}
$$

where ρ is the mass density and u_{x} is the x component of the displacement \vec{u}. The corresponding equations of motion along y and z can be found by cyclic permutation.

The transverse wave in the [100] direction in a cubic crystal

$$
\begin{equation*}
v_{T}[100]=\sqrt{c_{44} / \rho} \tag{2}
\end{equation*}
$$

Answer: $v_{T}[100]=\sqrt{c_{44} / \rho}$.

