Answer on Question \#51545, Physics, Other

7 A man walks 5.0 m due east and then $10.0 \mathrm{~m} \mathrm{~N} 30^{\circ} \mathrm{E}$. Find his resultant displacement.
A $13.7 \mathrm{~m}, \mathrm{~N} 15^{\circ} \mathrm{E}$
B $14.6 \mathrm{~m}, \mathrm{~N} 20^{\circ} \mathrm{E}$
C $10.0 \mathrm{~m}, \mathrm{~N} 15^{\circ} \mathrm{E}$
D $14.6 \mathrm{~m}, \mathrm{~N} 70^{\circ} \mathrm{E}$

Solution:

The displacement vector d from P_{1} to P_{2} may be written as

$$
\begin{gathered}
\overrightarrow{\mathrm{d}}=\left(x_{2}-x_{1}\right) \hat{\mathbf{\imath}}+\left(y_{2}-y_{1}\right) \hat{\mathbf{\jmath}} \\
x_{1}=0 ; \quad y_{1}=0 \\
x_{2}=5+10 * \cos 30^{\circ}=13.66 ; \quad y_{2}=10 * \sin 30^{\circ}=5
\end{gathered}
$$

The magnitude of the displacement is

$$
\mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{13.66^{2}+5^{2}}=14.55 \approx 14.6 \mathrm{~m}
$$

The angle we find from

$$
\begin{gathered}
\tan \theta=\frac{y_{2}}{x_{2}} \\
\theta=\tan ^{-1} \frac{y_{2}}{x_{2}}=\tan ^{-1} \frac{5}{13.66}=20.1^{\circ} \approx 20^{\circ}
\end{gathered}
$$

Answer: B $14.6 \mathrm{~m}, \mathrm{~N} 20^{\circ} \mathrm{E}$

