Answer on Question 51533, Physics, Electromagnetism Question:

A nichrome wire is 1.0 m long and $1.0 \mathrm{~mm}^{2}$ in cross-sectional area. It carries a current of 4.0 A when a potential difference of 2.0 V is applied between its ends. Calculate conductivity of the wire:
a) $2 M \Omega^{-1} \cdot \mathrm{~m}^{-1}$
b) $4 k \Omega^{-1} \cdot m^{-1}$
c) $2 m \Omega^{-1} \cdot \mathrm{~m}^{-1}$
d) $4 \Omega^{-1} \cdot \mathrm{~m}^{-1}$

Solution:

Conductivity is defined as the inverse of resistivity ρ :

$$
\sigma=\frac{1}{\rho}
$$

As we know, resistivity defined as:

$$
\rho=R \frac{A}{l},
$$

where R is the resistance of the wire, A is the cross-sectional area of the wire and l is the length of the wire.
In order to find the resistance of the wire we use the Ohm's law and obtain:

$$
R=\frac{V}{I}
$$

Then, we can rewrite our formula for the resistivity:

$$
\rho=\frac{V}{I} \cdot \frac{A}{l}
$$

Substituting the resistivity into the formula for the conductivity we finally get:

$$
\sigma=\frac{1}{\rho}=\frac{I \cdot l}{V \cdot A}=\frac{4.0 A \cdot 1.0 \mathrm{~m}}{2.0 V \cdot 1.0 \cdot 10^{-6} \mathrm{~m}^{2}}=2.0 \cdot 10^{6} \Omega^{-1} \cdot \mathrm{~m}^{-1}=2.0 M \Omega^{-1} \cdot \mathrm{~m}^{-1}
$$

Answer:

a) $2 M \Omega^{-1} \cdot m^{-1}$

