
Answer on Question#51506 - Physics - Electromagnetism

Two charges $Q_1=500\mu\text{C}$ and $Q_2=100\mu\text{C}$ are located on the XY plane at the positions $r_1=3\vec{j}$ m and $r_2=4\vec{i}$ m. Find the force exerted on the Q_2 .

Solution:

The force exerted on the \mathcal{Q}_2 is

$$F = k_e \frac{Q_1 Q_2}{|r_{12}|^3} r_{12},$$

where $k_e=8.9875\cdot 10^9\frac{ ext{N}\cdot ext{m}^2}{ ext{C}^2}$ — is Coulomb's constant, $r_{12}=r_2-r_1=4\vec{\imath}\ ext{m}-3\vec{\jmath}\ ext{m}.$

$$|r_{12}| = \sqrt{4^2 \text{m}^2 + 3^2 \text{m}^2} = 5\text{m}$$

Therefore

$$F = k_e \frac{Q_1 Q_2}{|\mathbf{r}_{12}|^3} \mathbf{r}_{12} = 8.9875 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \frac{500 \mu \text{C} \cdot 100 \mu \text{C}}{125 \text{m}^3} (4\vec{\imath} \text{ m} - 3\vec{\jmath} \text{ m}) =$$

$$= 17.975 \text{N} \cdot (0.5\vec{\imath} - 0.6\vec{\jmath})$$

Answer:
$$F = k_e \frac{Q_1 Q_2}{|r_{12}|^3} r_{12} = 17.975 \text{N} \cdot (0.5 \vec{i} - 0.6 \vec{j}).$$