Answer on Question\#51505 - Physics - Electromagnetism

1. A voltmeter connected across a 60 Hz ac source reads 240 V . Write down the expression of the instantaneous voltage as a function of time.
2. An air-cored transformer is assumed to be 100% efficient. The ratio of the secondary turns to the primary turns is $1: 20$. A 240 V ac supply is connected to the primary coil and a 6Ω load is connected to the secondary coil. What is the current in the primary coil?
3. A galvanometer of resistance 120Ω a full scale deflection with a current of 0.0005 A . How would you convert it to an ammeter that reads a maximum current of 5A?
4. A proton with speed v perpendicular to a magnetic field B is experiences a force F. If the speed of the proton is doubled, the new force is

Solution:

1. The voltmeter reads the average voltage, which is $\sqrt{2}$ times smaller than the maximum voltage of source. So the instantaneous voltage is given by the expression

$$
V(t)=240 \sqrt{2} \mathrm{~V} \cdot \cos (2 \pi \cdot 60 \mathrm{~Hz} \cdot t)=240 \sqrt{2} \mathrm{~V} \cdot \cos \left(120 \pi \cdot s^{-1} \cdot t\right)
$$

2. According to the ideal transformer identity

$$
\frac{V_{P}}{V_{S}}=\frac{I_{S}}{I_{P}}=a,
$$

where V_{S} and I_{S} - are voltage and current in the secondary coil, V_{P} and I_{P} - are voltage and current in the primary coil, and 1:20=1: a.
So the voltage in the secondary coil is

$$
V_{S}=a \cdot V_{P}=20 \cdot 240 \mathrm{~V}=4800 \mathrm{~V}
$$

The current in the secondary coil is

$$
I_{S}=\frac{V_{S}}{R}=\frac{4800 \mathrm{~V}}{6 \Omega}=800 \mathrm{~A}
$$

The current in the primary coil is

$$
I_{P}=\frac{I_{S}}{a}=\frac{800 \mathrm{~A}}{20}=40 \mathrm{~A}
$$

3. To convert a galvanometer to ammeter we should add to it some parallel resistance R. Since the galvanometer and the resistance R are parallel, the voltage across this parallel connection is equal to the voltage across the galvanometer, which is

$$
V_{G}=120 \Omega \cdot 0.0005 \mathrm{~A}=0.06 \mathrm{~V}
$$

The resistance of this parallel connection is

$$
R_{\|}=\frac{R_{G} R}{R_{G}+R}
$$

This ammeter should be able to read a maximum current of 5 A , so

$$
\begin{gathered}
V_{G}=R_{\|} \cdot 5 \mathrm{~A} \\
0.06 \mathrm{~V}=\frac{120 \Omega \cdot R}{120 \Omega+R} 5 \mathrm{~A} \\
R=\frac{7.2}{600-0.06} \Omega \approx \frac{7.2}{600} \Omega=12 \mathrm{~m} \Omega
\end{gathered}
$$

4. The Lorenz force, acting on the proton moving with speed v is

$$
F=e \cdot v \cdot B
$$

The Lorenz force, acting on the proton moving with speed $2 v$ is

$$
F^{\prime}=e \cdot 2 v \cdot B
$$

So

$$
\frac{F^{\prime}}{F}=\frac{e \cdot 2 v \cdot B}{e \cdot v \cdot B}=2 \Rightarrow F^{\prime}=2 F
$$

Answer:

1. $V(t)=240 \sqrt{2} \mathrm{~V} \cdot \cos \left(120 \pi \cdot s^{-1} \cdot t\right)$
2. 40 A
3. $12 \mathrm{~m} \Omega$
4. $2 F$
