Answer on Question \#51469, Physics, Mechanics | Kinematics | Dynamics

Two balls having masses m and $2 m$ are fastened to two light strings of same length I which is held horizontally[say x axis, with the mass $2 m$ at $(1,0)$ and mass m at $(-I, 0)$]. The strings are kept fixed at origin. This system is released from rest. Collision between the balls is elastic in nature.
a- find the velocities of the balls just after their collision and
b- how high will the balls rise after collision ?

Solution:

As a ball begins moving, its potential energy is converted to kinetic energy.

$$
m g l=\frac{m v^{2}}{2}
$$

Thus, the velocity of first and second ball is the same and equal

$$
v=\sqrt{2 g l}
$$

The equation that denotes the conservation of momentum is:

$$
m_{1} v_{1 i}-m_{2} v_{2 i}=-m_{1} v_{1 f}+m_{2} v_{2 f}
$$

where, $\mathrm{m}_{1}=\mathrm{m}$ mass of object or ball 1
$m_{2}=2 \mathrm{~m}$ mass of ball 2
$v_{1 i}=v$ initial velocity of ball 1
$v_{2 i}=v$ initial velocity of ball 2
$v_{1 f}=$ final velocity of ball 1
$v_{2 f}=$ final velocity of ball 2

$$
\begin{gathered}
2 m v-m v=2 m v_{2 f}+m v_{1 f} \\
v=v_{1 f}+2 v_{2 f}
\end{gathered}
$$

The kinetic energy conservation formula is

$$
\begin{gathered}
\frac{m v^{2}}{2}+\frac{2 m v^{2}}{2}=\frac{m v_{1 f}^{2}}{2}+\frac{2 m v_{2 f}^{2}}{2} \\
3 v^{2}=v_{1 f}^{2}+2 v_{2 f}^{2}
\end{gathered}
$$

Substituting

$$
\begin{gathered}
v_{2 f}=\frac{v-v_{1 f}}{2} \\
3 v^{2}=v_{1 f}^{2}+2\left(\frac{v-v_{1 f}}{2}\right)^{2} \\
3 v^{2}=v_{1 f}^{2}+2\left(\frac{v^{2}-2 v v_{1 f}+v_{1 f}^{2}}{4}\right) \\
3 v^{2}=v_{1 f}^{2}+\frac{v^{2}}{2}-v_{1 f}+\frac{v_{1 f}^{2}}{2} \\
6 v^{2}=2 v_{1 f}^{2}+v^{2}-2 v v_{1 f}+v_{1 f}^{2} \\
3 v_{1 f}^{2}-2 v v_{1 f}-5 v^{2}=0 \\
v_{1 f}=\frac{2 v \pm \sqrt{4 v^{2}-4 * 3 *\left(-5 v^{2}\right)}}{6}=\frac{2 v \pm v \sqrt{64}}{6}=\frac{5 v}{3} \text { or }-v
\end{gathered}
$$

$$
v_{2 f}=-\frac{1}{3} v \text { or } v
$$

We choose set of solution

$$
\begin{gathered}
v_{1 f}=\frac{5 v}{3}=\frac{5}{3} \sqrt{2 g l} \\
v_{2 f}=-\frac{1}{3} \sqrt{2 g l}
\end{gathered}
$$

b.

$$
\begin{gathered}
h_{1}=\frac{v_{1 f}^{2}}{2 g}=\frac{25 * 2 g l}{9 * 2 g}=\frac{25}{9} l \\
h_{2}=\frac{v_{2 f}^{2}}{2 g}=\frac{2 g l}{9 * 2 g}=\frac{l}{9}
\end{gathered}
$$

Answer: a. $v_{1 f}=\frac{5}{3} \sqrt{2 g l} ; \quad v_{2 f}=--\frac{1}{3} \sqrt{2 g l}$
b. $h_{1}=\frac{25}{9} l ; \quad h_{2}=\frac{l}{9}$;

