Answer on Question\#51456-Physics - Mechanics - Kinematics - Dynamics

1. A particle moves on a circle in accordance to the equation $s=t^{4}-8 t$, where s is the displacement in feet measured along the circular path and t is in seconds. 2 seconds after starting from rest the total acceleration of the particle is $48 \sqrt{2} \frac{\mathrm{ft}}{\sec ^{2}}$. Compute the radius of the circle.
2. As you drive down the road at $v_{0}=17 \frac{\mathrm{~m}}{\mathrm{~s}}$, you press at the gas pedal and speed up with the uniform acceleration of $a=21.12 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ for $t=.65 \mathrm{~s}$. If the tires on your car have a radius of $R=33 \mathrm{~cm}$ what is their angular displacement during the period of acceleration.

Solution:

1. The speed of the particle at time t is

$$
v(t)=\frac{d s}{d t}=4 t^{3}-8
$$

The tangent acceleration is at time t is

$$
a_{\tau}(t)=\frac{d^{2} s}{s t^{2}}=\frac{d v}{d t}=12 t^{2}
$$

The centripetal acceleration at time t is

$$
a_{r}(t)=\frac{v^{2}(t)}{r}=\frac{\left(4 t^{3}-8\right)^{2}}{r}
$$

Since centripetal and tangent accelerations are perpendicular to each other, the total acceleration is given by

$$
a(t)=\sqrt{a_{\tau}^{2}(t)+a_{r}^{2}(t)}=\sqrt{144 t^{4}+\frac{\left(4 t^{3}-8\right)^{4}}{r^{2}}}
$$

It's given that $a(2)=48 \sqrt{2} \frac{\mathrm{ft}}{\mathrm{s}^{2}}$, so

$$
\begin{gathered}
\sqrt{144 \cdot 2^{4}+\frac{\left(4 \cdot 2^{3}-8\right)^{4}}{r^{2}}}=48 \sqrt{2} \\
r=12 \mathrm{ft}
\end{gathered}
$$

2. The distance traveled during the period of acceleration is

$$
l=v_{0} \cdot t+\frac{a \cdot t^{2}}{2}
$$

To find the angular displacement of tires in radians, we should divide this distance by the radius of tires

$$
\Delta \varphi=\frac{l}{R}=\frac{v_{0} \cdot t}{R}+\frac{a \cdot t^{2}}{2 R}=\frac{17 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 0.65 \mathrm{~s}}{0.33 \mathrm{~m}}+\frac{21.12 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.4225 \mathrm{~s}^{2}}{0.66 \mathrm{~m}}=47
$$

Answer:

1. $r=12 \mathrm{ft}$
2. $\Delta \varphi=\frac{v_{0} \cdot t}{R}+\frac{a \cdot t^{2}}{2 R}=47$
